
The Open–source PKI Book
A guide to PKIs and Open–source Implementations

Symeon (Simos) Xenitellis
OpenCA Team

The Open–source PKI Book: A guide to PKIs and Open–source Implementations
by Symeon (Simos) Xenitellis

The Open–source PKI Book Version 2.4.6 Edition
Copyright © 1999, 2000 Symeon (Simos) Xenitellis

This document describes Public Key Infrastructures, the PKIX standards, practical PKI function-
ality and gives an overview of available open–source PKI implementations. Its aim is foster the
creation of viable open–source PKI implementatations.
The latest version of this document can be found at the OSPKI Book WWW site at
http://ospkibook.sourceforge.net/ .

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant
Sections being the chapters Chapter 13 ("Contributions") and the Colophon ("About this document"), with Front-Cover
Texts being the text "The Open–source PKI Book, A guide to PKIs and Open–source Implementations" and with
Back-Cover Texts being the text "The author’s studies are funded by State’s Scholarship Foundation (SSF) of Greece". A
copy of the license is included in Appendix E entitled "GNU Free Documentation License".

Revision History
Revision 0.6 18 Dec 1999 Revised by: S.Xenitellis@rhbnc.ac.uk
First public distribution, version in LinuxDoc
Revision 0.7 15 Jan 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Initial conversion to DocBook
Revision 0.8 20 Jan 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Major additions (still not published)
Revision 0.9 05 Feb 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Additions in appendices, installation details(still not published)
Revision 0.91 07 Feb 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Further polishing (still not published)
Revision 1.0 16 Feb 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
First public release
Revision 1.1 2 May 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Use of the FDL license, cosmetic changes
Revision 2.0 13 May 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Review by Ted Rolle, added critical discussion/colophon, updated program version numbers
Revision 2.1 13 May 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Added PKIX chapter
Revision 2.3 14 May 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Added chapter on implentations
Revision 2.4.5 16 June 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Populating the implementations chapter
Revision 2.4.6 26 June 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Fixed HTML production, better Makefile, minor doc changes
Revision 2.4.7 23 July 2000 Revised by: S.Xenitellis@rhbnc.ac.uk
Updated CDSA, added SSO/PAM/FPKI/APKI

Table of Contents
1. Purpose of this document..1
2. Introduction to Cryptography ..2

Cryptographic Algorithms ...2
Message Digests ...3
Digital Signatures...3
Certificates...4
Certification Authority ..4

3. Basic functionality of a Public Key Infrastructure[TODO]5
Creation of the key–pair and the certificate request ...5
Signing of the certificate request by the Certification Authority5
Certification Authority chains..5
Typical uses of public key cryptography..5

4. General implementation overview ...7
Prerequisites..7

Useful open–source software..7
Initialisation of the Certification Authority..7

Generate the RSA key–pair for the CA..7
Create a self–signed CA Certificate..8

User/Server key generation and signing ...9
Generate the RSA key–pair for a user/server ..10
Generate a certificate request ..10
Ask the CA to sign the certificate request ...11

5. PKI standards and specifications...13
Internet X.509 Public Key Infrastructure (PKIX) ...13
Architecture for Public-Key Infrastructure (APKI) ...13
The NIST Public Key Infrastructure Program..13

6. Internet X.509 Public Key Infrastructure (PKIX) ..15
Abbreviations..15
Concepts ..15

Certificate–using Systems and PKIs ..16
Certificate–using Systems and PMIs..17

Overview of the PKIX approach ..17
PKIX standardisation areas ...17
Public–key infrastructure functionality...19
Public–Key Infrastructure (PKI) ...20
Privilege Management Infrastructure (PMI) ..21

7. Open-Source Implementations..23
The pyCA Certification Authority...23
The OpenCA Project[TODO]..23

OpenCA Layout..23
OpenCA Abbreviations ...24
Software packages ..25
Functionality of the CA Server (CAServer) ...25
Functionality of the RA Server (RAServer)..28
Functionality of the RA Operators (RAOperators)30
Status of the OpenCA Project ...31
Future OpenCA work ..31

The Oscar Public Key Infrastructure Project ..32
Jonah: Freeware PKIX reference implementation..32
Mozilla Open Source PKI projects ...33

Personal Security Manager (PSM)..34
Network Security Services (NSS) ...34
JavaScript API for Client Certificate Management34

MISPC Reference Implementation...35

iii

8. How to get software support ..37
9. Supported Crypto hardware and Software architectures38

TrustWay Crypto PCI 2000..38
PowerCrypt Encryption Accelerator...38
CryptoSwift eCommerce Accelerator..38
Movement for the Use of Smart Cards in a Linux Environment (MUSCLE)38
Linux Smart Card Starter’s Kit from Schlumberger..39
The gpkcs11 PKCS#11 open–source implementation ...39
Common Data Security Architecture (CDSA) ...39
Single Sign–on ..40
The KeyMan PKI Management Tool ...40
Distributed Audit Service (XDAS)...41
Generic Security Service API (GSS-API)...41
Simple Network Time Protocol (SNTP) ..41
Lightweight Directory Access Protocol (LDAP)..41
S/MIME CMS [TODO]..41

10. Critical discussion[TODO] ...43
11. Benefits of an Open–Source PKI implementation[TODO]..................................44
12. Trademarks...45
13. Contributions...46
A. Perl modules ...47

Locating Perl modules...47
Installing Perl modules..47

B. Sample Certificate Documents ..49
Sample Encrypted Private Key in PEM format (2048 bits)49
Sample Private Key in PEM format (2048 bits)..49
Sample Private Key in TXT format (2048 bits) ...50
Sample CA Certificate in PEM format ..53
Sample CA Certificate in TXT format ...54
Sample certificate request in PEM format ..55
Sample certificate request in TXT format ...56

C. Description of Public Key Algorithms ..58
How does RSA work?..58

Description ..58
Practical example..59

How does El Gamal work? ...59
Description ..59
Example..59

D. OpenCA Installation details ...60
Software installation sequence ...60

Installation of Perl modules ..60
Installation of OpenCA–specific modules ..61
Installation of OpenCA..61
WWW Server installation ..64
LDAP installation ...64

openssl.cnf configuration for OpenCA ...64
E. License .. 67

GNU Free Documentation License..67
PREAMBLE ...67
APPLICABILITY AND DEFINITIONS ...67
VERBATIM COPYING ..68
COPYING IN QUANTITY ..68
MODIFICATIONS ..69
COMBINING DOCUMENTS ...70
COLLECTIONS OF DOCUMENTS...70
AGGREGATION WITH INDEPENDENT WORKS71

iv

TRANSLATION..71
TERMINATION..71
FUTURE REVISIONS OF THIS LICENSE ..71

Colophon .. 72
Glossary .. 73
Bibliography .. 81

v

vi

Chapter 1. Purpose of this document
This document tries to serve as a source of information on Public Key Infrastructures
(PKIs) and focuses on both of the theoretic and practical description of PKIs.
With relation to specific standards, the work of the PKIX Working Group1 is pre-
sented. There is an emphasis on these standards and there is an attempt to classify
implementations according to the degree of compliance.
This document starts with an introduction on public–key cryptography. Then, it de-
scribes several publicly available implementations providing a feature by feature
comparison.
There is a further discussion on security issues with accordance with PKIs.
The implementations are presented as an educational instrument to test the protocols,
to provide a source of feedback and to enable the individual to learn more about the
wonderfull world of PKIs.

Note: The latest version of this document can be found at the OSPKI Book WWW site 2.

Notes
1. http://www.ietf.org/html.charters/pkix-charter.html
2. http://ospkibook.sourceforge.net/

1

Chapter 1. Purpose of this document

2

Chapter 2. Introduction to Cryptography
Communication is an essential part of life. We can say that it marks the progress
of human beings. Traditional media for communication are the sending of letters
through the Post Office, talking over the phone through the Telecommunications
company, or -- more commonly -- to speak directly with the other person. These tra-
ditional media have existed for a long period of time and special provisions have
been made so that people can communicate in a secure way, either for personal or
for business communication. For face–to–face communication, people can recognise
each other’s physical characteristics or they can compare hand–written signatures
with that of official documents like an ID card. Mimicking all of the physical charac-
teristics of a person is difficult. People can accept with a high level of certainty the
identity of their colleague. Signature forging is difficult and there are laws that define
forging as a crime. The bottom line is that for each communication medium, there is
a transitional period when specific laws and technologies are set in order for people
to communicate securely and transparently.
The Internet, as a network that interconnects networks of computers around the
world, is a new communication medium that is substantially different from existing
ones. For example, on the Internet, the communicating parties do not have phys-
ical contact. It is rather more difficult for one to disguise oneself to someone else,
immitate the voice and other aspects behaviour and get information on prior com-
mon experiences. On–line transactions do not impose such barriers for illegitimate
transactions. Additionally, on the Internet, one can automate the same type of fraud
bringing higher gains and a bigger incentive. The law and the technologies to let
transparent and secure communication have not been fully defined or set yet.
Cryptography has provided us with digital signatures that resemble in functionality
the hand–written signatures and digital certificates that relate to an ID card or some
other official document. However, in order to use these technologies, we need to
make the necessary provisions so that their usage is equally transparent and secure.
The Public Key Infrastructures along with the Priviledge Management Infrastructure
are candidates to aid this transparency and security of applications of the Internet.
Both of these concepts are described in Chapter 6.
Big parts of the following introduction to cryptography has been taken from the
SSLeay Certificate Cookbook1, written by Frederick J. Hirsch2.

Cryptographic Algorithms
Cryptography has several differences from pure mathematics. One of these is that
cryptography is more descriptive in its textbooks. While a mathematician may use A
and B to explain an algorithm, a cryptographer may use the fictious names Alice and
Bob. Thus, in the next sections, the names Alice and Bob are not randomly chosen;
they can be found in almost all cryptography textbooks.
Suppose Alice wants to send a message to her bank to transfer money. Alice would
like the message to be private, since it includes information such as her account num-
ber and transfer amount. One solution is to use a cryptographic algorithm, a tech-
nique that would transform her message into an encrypted form, unreadable except
by those for whom it is intended. When encrypted, the message can only be inter-
preted through the use of the corresponding secret key. Without the key the message
is useless: good cryptographic algorithms make it so difficult for intruders to decode
the original text that it isn’t worth their effort.
There are two categories of cryptographic algorithms: conventional and public key.
Conventional cryptography, also known as symmetric cryptography, requires that
the sender and receiver share a key: a secret piece of information that is used to en-
crypt or decrypt a message. If this key is secret, then nobody other than the sender or
receiver can read the message. If Alice and the bank each has a secret key, then they

3

Chapter 2. Introduction to Cryptography

may send each other private messages. The task of privately choosing a key before
communicating, however, can be problematic.
Public key cryptography, also known as asymmetric cryptography, solves the key ex-
change problem by defining an algorithm which uses two keys, each of which can be
used to encrypt a message. If one key is used to encrypt a message, then the other
must be used to decrypt it. This makes it possible to receive secure messages by sim-
ply publishing one key (the public key) and keeping the other secret (the private
key).
Anyone may encrypt a message using the public key, but only the owner of the pri-
vate key is able to read it. In this way, Alice may send private messages to the owner
of a key–pair (the bank) by encrypting it using their public key. Only the bank can
decrypt it.
Examples of public–key algorithms can be found at Appendix C.

Message Digests
Although Alice may encrypt her message to make it private, there is still a concern
that someone might modify her original message message or substitute it with a dif-
ferent one in order to transfer the money to themselves, for instance. One way of
guaranteeing the integrity of Alice’s message is to create a concise summary of her
message and send this to the bank as well. Upon receipt of the message, the bank
creates its own summary and compares it with the one Alice sent. If they agree then
the message was received intact.
A summary such as this is called a message digest, one–way function, or hash
function. Message digests create short, fixed–length representations of longer,
variable–length messages. Digest algorithms are designed to produce unique
digests for different messages. Message digests make it difficult to determine the
message from the digest, and difficult to find two different messages which create
the same digest –– eliminating the possibility of substituting one message for
another while maintaining the same digest.
Another challenge that Alice faces is finding a way to send the digest to the bank
securely; when this is achieved, the integrity of the associated message is assured.
One way to to this is to include the digest in a digital signature.

Digital Signatures
When Alice sends a message to the bank, the bank needs to ensure that the mes-
sage is really from her, and not an intruder requesting a transaction involving her
account. A digital signature, created by Alice and included with the message, serves
this purpose.
Digital signatures are created by encrypting a digest of the message, and other infor-
mation (such as a sequence number) with the sender’s private key. Though anyone
may decrypt the signature using the public key, only the signer knows the private
key. This ensures that only the signator signed it. Including the digest in the signa-
ture means the signature is only good for that message; it also ensures the integrity
of the message since no one can change the digest and still sign it.
To guard against interception and reuse of the signature by an intruder at a later
date, the signature contains an unique sequence number. This protects the bank from
a fraudulent claim from Alice that she did not send the message –– only she could
have signed it (non–repudiation).

4

Chapter 2. Introduction to Cryptography

Certificates
Although Alice could have sent a private message to the bank, signed it, and ensured
the integrity of the message, she still needs to be sure that she is really communicating
with the bank. This means that she needs to be sure that the public key she is using
corresponds to the bank’s private key. Similarly, the bank also needs to verify that the
message signature really corresponds to Alice’s signature.
If each party has a certificate which validates the other’s identity, confirms the pub-
lic key, and is signed by a trusted agency, then they both are assured that they are
communicating with whom they think they are. Each party uses the public key of the
trusted agency to verify the certificate of the other party and subsequently to ensure
the authenticity of the users’ public key.

Certification Authority
The trusted agency that signs Certificates with its private key and lets others verify
Certificates by the usage of the corresponding public key is called a Certification
Authority, or CA. This Certification Authority is also known as a Trusted Third Party
(TTP), since it is regarded that, in order to be trusted, it should not have common
interests with any of the two parties.

Note: It is believed that a bank should not be a Certification Authority and also be the
party that you make economic transactions with. They reason is that, as a CA, it can favor
itself, as a party one does business with.

In this document we concentrate on the technical aspects of the Certification Author-
ity.

Notes
1. http://www.ultranet.com/~fhirsch/Papers/cook/ssl_cook.html
2. http://www.ultranet.com/~fhirsch/Papers/cook/ssl_intro.html

5

Chapter 2. Introduction to Cryptography

6

Chapter 3. Basic functionality of a Public Key
Infrastructure[TODO]

Alice wants to communicate securely with Bob. In essence, this means that Alice
does not want someone else to listen to the conversation, wants the information sent
to Bob not to be altered on their way to him and finally she would possibly like a
mechanism to prove that she had this conversation, in case, for some reason, claim
he did not. We shall describe all the steps necessary to establish communication using
the Certification Authority.

Creation of the key–pair and the certificate request
Alice creates a public/private key pair using a public key algorithm like RSA. Then,
she creates a certificate request, which is the Certificate just prior to signing by the
Certification Authority. First, the certificate request contains information about the
identity of the user, such as the name, address, telephone number and e–mail address.
Second, it contains her public key. Certificates can be used to authenticate not only
people but also entities in general, such as a WWW server or a network device. In the
latter case, the information in the Certificate would be the URL of the WWW server,
the WWW Administrator details, and so on.

Signing of the certificate request by the Certification Authority
Alice sends her certificate request to the Registration Authority for its signature. Any
action of approval or disapproval takes place at the Registration Authority. Then, the
RA sends the request to the CA for policy approval and to be signed. The result of the
signing –– the Certificate –– is sent back to Alice through the Registration Authority.
They also are often stored on a Directory Server.

Certification Authority chains
Using this certificate, Alice can claim that her public key is trustworthy. Bob who
wants to communicate with her, asks for her Certificate. Bob, in order to verify her
Certificate, finds the public key of the Certification Authority that signed the Alice’s
public key. He needs to do that securely. If they are both on the same Certification
Authority then he has it already. If not, he asks his Certification Authority to contact
the other Certification Authority for its public key. For each Certification Authority
Bob’s Certification Authority asks, he needs the public key of the previous one so
that the authenticity of the key is assured. If a chain can be found that leads to the
other Certification Authority then communication can be established.

Note: The issue of inter-CA trust is very important since one bad CA can undermine the
security of the whole infrastructure. This issue is not covered here (at least in this version).

Typical uses of public key cryptography
Having the authentic public keys of each other, users can communicate securely. They
can encrypt data and make use of digital signatures. For the part of encryption, public
key cryptography is too slow to be used for the transfer of large quantity of data.
A symmetric cipher is more suited to this purpose. For this reason, the key for the
symmetric cipher is transferred encrypted using public–key cryptography.

7

Chapter 3. Basic functionality of a Public Key Infrastructure[TODO]

8

Chapter 4. General implementation overview
We give a technical overview of the processes of creating a certificate and operating
a Certification Authority.

Prerequisites
We shall discuss here the software needed to create a usable Certification Authority.

Useful open–source software
The following software can provide the collective functionality of a Certification Au-
thority.

• For the Certification Authority Server, any operating system can be used. In case
it communicates manually with the Registration Authority (for example, data files
are transfered using a floppy disk), it does not even need to have network support.
However, it is recommended to use operating systems that provide some sort of
assurance of its stability and can have irrelevant system or network services easily
removed. We recommend Unix™ or Unix™–like operating systems.

• SSL/TLS software
• WWW server with SSL/TLS support
• LDAP server
• Text/Graphical Interface, possibly in Java/HTML

Note: The PKIX standards do not suggest nor forbid the use of a WWW server for the
role of a CA/RA. To remove the need to create standalone network applications for both
the CA and RA, it is possible to use individual WWW servers operated by designated
Operators.

Initialisation of the Certification Authority
Here we describe the initialisation phase of the CA. This takes place once. Special
care is needed for the protection of the CA’s private key.

Note: The following examples require the OpenSSL software installed on your worksta-
tion. Also, it is recommended to have the directory that the openssl application resides,
in your PATH environment variable. Possible locations for the openssl application are
/usr/local/ssl/bin/ or /usr/bin/.

Generate the RSA key–pair for the CA
Use this command to generate the RSA key–pair:

CA_Admin% openssl genrsa -des3 -out ca.key 2048

9

Chapter 4. General implementation overview

Parameters

genrsa
the openssl component to generate an RSA key–pair,

-des3
the symmetric algorithm to encrypt the key–pair,

-out ca.key
the filename to store the key–pair,

2048
size of RSA modulus in bits.

Executing the above command, the user is presented with the following information

1112 semi-random bytes loaded
Generating RSA private key, 2048 bit long modulus
.+++++
..+++++
e is 65537 (0x10001)
Enter PEM pass phrase: enter the pass-phrase here
Verifying password - Enter PEM pass phrase: re-enter
the pass-phrase here

This creates an RSA key pair which is stored in the file ca.key. This key pair is en-
crypted with 3DES using a password supplied by the user during key generation.
The N in RSA (the product of the two prime numbers) is 2048 bits long. For brevity,
we say that we use 2048-bit RSA.
A sample key–pair, encrypted with a pass–phrase, can be found at
the Section called Sample Encrypted Private Key in PEM format (2048 bits) in Appendix B.
This same key–pair without the pass–phrase encryption is at
the Section called Sample Private Key in PEM format (2048 bits) in Appendix B.
The decoded version of the same key can be found at
the Section called Sample Private Key in TXT format (2048 bits) in Appendix B.

Create a self–signed CA Certificate
In order to get a self–signed CA Certificate, we need to sign the CA’s certificate
request with the corresponding private key. The resulting Certificate has the X.509
structure.

CA_Admin% openssl req -new -x509 -days 365 -key ca.key -out ca.crt

Parameters

req
the openssl component to generate a certificate request,

-new
this is a new certificate,

10

Chapter 4. General implementation overview

-x509
generate an X.509 certificate,

-days 365
the time in days that the certificate will be valid, counting from now,

-key ca.key

the key–pair file to be used,

-out ca.crt
the filename that the new certificate will be written onto

Executing the above command presents this dialogue:

Using configuration from /usr/local/ssl/openssl.cnf
Enter PEM pass phrase: enter the pass-phrase here
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:Surrey
Locality Name (eg, city) []:.
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Best CA Ltd
Organizational Unit Name (eg, section) []:Class 1 Public Primary Certification Authority
Common Name (eg, YOUR name) []:Best CA Ltd
Email Address []:.
CA_Admin%

This creates a self–signed certificate, called ca.crt. It is valid for 365 days from the
date of generation. In this step, the CA Administrator has to enter the X.509 details
of the CA Root Certificate.
A sample CA Certificate, in PEM format, can be found at
the Section called Sample CA Certificate in PEM format in Appendix B.
The TXT or human–readable of the same Certificate can be found at
the Section called Sample CA Certificate in TXT format in Appendix B.

User/Server key generation and signing
The user generates a key pair for a certificate to be used by that user or any entity
that needs to be authenticated by the CA. We also show the signing procedure.

Generate the RSA key–pair for a user/server
Use this command to generate the RSA key pair

User% openssl genrsa -des3 -out user.key 2048

11

Chapter 4. General implementation overview

Parameters

genrsa
the openssl component to generate an RSA key–pair,

-des3
the symmetric algorithm to encrypt the key–pair,

-out user.key
the filename to store the key–pair,

2048
size of RSA modulus in bits.

Execution of the above command presents the user with the following dialogue:

1112 semi-random bytes loaded
Generating RSA private key, 2048 bit long modulus
.+++++
..++++++++++++
e is 65537 (0x10001)
Enter PEM pass phrase: enter the pass-phrase here
Verifying password - Enter PEM pass phrase: re-enter pass-phrase here

This creates an RSA key pair stored in the file user.key. The key pair is encrypted
with 3DES with a password supplied by the user during key generation. The N in
RSA is 2048 bits long.
The reader should note that this is the same procedure as the generation of
the CA key–pair. For sample key–pairs, please see the appendices listed in
the Section called Generate the RSA key–pair for the CA.

Generate a certificate request
The user generates a certificate request with this command. The CSR is sent to the
CA for signing. The CA returns the the signed certificate.

User% openssl req -new -key user.key -out user.csr

Parameters

req
the openssl component to generate a certificate request,

-new
this is a new certificate,

-key user.key

the key–pair file to be used,

12

Chapter 4. General implementation overview

-out user.csr
the filename that the new certificate request will be written onto

By executing the above command, we are presented with the following dialogue:

Using configuration from /usr/local/ssl/openssl.cnf
Enter PEM pass phrase: type the pass-phrase here
You are about to be asked to enter information that will
be incorporated into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:Surrey
Locality Name (eg, city) []:Egham
Organization Name (eg, company) [MyCo Ltd]:Arts Building Ltd
Organizational Unit Name (eg, section) []:Dept. History
Common Name (eg, YOUR name) []:Simos Xenitellis
Email Address []:S.Xenitellis@rhbnc.ac.uk

Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:.
An optional company name []:.
User%

This command creates a certificate request stored in the file user.csr.
In this phase, the user enters the values of the fields for the X.509
Certificate as shown. For a certificate request in PEM format, please see
the Section called Sample certificate request in PEM format in Appendix B.
For a TXT or human–readable version, please check
the Section called Sample certificate request in TXT format in Appendix B.

Ask the CA to sign the certificate request
The CA receives the certificate request, and depending on the policy used, will decide
whether to sign the CSR. If it trusts the user, it signs the CSR as follows:

CA_Admin% ./sign.sh user.csr
CA signing: user.csr -> user.crt:
Using configuration from ca.config
Enter PEM pass phrase: enter the pass-phrase
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:’GB’
stateOrProvinceName :PRINTABLE:’Surrey’
localityName :PRINTABLE:’Egham’
organizationName :PRINTABLE:’Arts Building Ltd’
organizationalUnitName:PRINTABLE:’Dept. History’
commonName :PRINTABLE:’Simos Xenitellis’
emailAddress :IA5STRING:’S.Xenitellis@rhbnc.ac.uk’
Certificate is to be certified until Feb 6 13:30:41 2001 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries

13

Chapter 4. General implementation overview

Data Base Updated
CA verifying: user.crt <-> CA cert
user.crt: OK
CA_Admin%

This command produces a file called user.crt, the Certificate of the user. The sign.sh
script can be found in the modssl package, described above, at the /pkg.contrib/
directory. This script uses openssl as a backend. We use the script and not the manual
procedure because with the latter we would have to perform rather several steps and
this would be out of the scope of this book. In a future version of this document, we
shall revisit this issue.

14

Chapter 5. PKI standards and specifications
We describe available PKI-related standards and specifications and discuss the
usability of each of them. Open standards and specifications are important to
open–source PKIs, since they remove possible interoperability obstacles of
closed–source implementations.

Internet X.509 Public Key Infrastructure (PKIX)
PKIX is covered in Chapter 6.

Architecture for Public-Key Infrastructure (APKI)
APKI is a specification for a Public Key Infrastructure, created by the The Open
Group1. It describes the architecture, the requirements and the components of a PKI.
Also, it gives recommendations for implementors on the use of protocols and other
specifications. This specification 2 is available in HTML and PDF format and one can
download it by registering freely on the WWW site. A hard copy is also available.
In a nutshell, this specification gives a high-level overview of the components of a
PKI and recommends other protocols and specifications that should be used in order
to get a standard-based functionality. Summing up, it recommends the use of

• The PKIX standards, covered in Chapter 6.
• The CDSA 2.0 Common Data Security Architecture, covered in

the Section called Common Data Security Architecture (CDSA) in Chapter 9.
• The XDAS Distributed Audit Service, covered in

the Section called Distributed Audit Service (XDAS) in Chapter 9.
• The GSS-API Generic Security API and its extensions (XGSS-API), covered in

the Section called Generic Security Service API (GSS-API) in Chapter 9.
• The LDAP Lightweight Directory Access Protocol, covered in

the Section called Lightweight Directory Access Protocol (LDAP) in Chapter 9.
• The IETF S/MIME Cryptographic Message Syntax (CMS), version 3, covered in

the Section called S/MIME CMS [TODO] in Chapter 9.
• The IETF (RFC2030) Simple Network Time Protocol (SNTP), covered in

the Section called Simple Network Time Protocol (SNTP) in Chapter 9.

The NIST Public Key Infrastructure Program
The National Institute of Standards and Technology (NIST), part of the U.S. Depart-
ment of Commerce, is developing specifications for Public Key Infrastructures for the
internal use of the U.S. government electronic infrastructure. These efforts do not aim
to duplicate existing work of PKI vendors, rather than to ease the integration of the
use of public-key technology from possibly inoperable implementations.
This work is being developed with the help of industry partners, using agreements
called CRADAs (Cooperative Research and Development Agreements) in the sense
that companies and the government work together to specify the PKI products to be
produced that the latter will buy as a consumer. In this sense, since the U.S. govern-
ment is a big buyer, one can expect that the work of the NIST somehow specifies the
future of the PKI products that will be used worldwide.

15

Chapter 5. PKI standards and specifications

Among the publicly available documents is the MISPC specification that provides
a basis for interoperation between PKI components from different vendors.
Vendor willing to get contracts for U.S. Federal agencies should be able to
provide compatible PKI components. Possible open-source PKI implementations
would obviously need to comply with those specifications. The MISPC
specification is the basis for the NIST reference implementation, also described in
the Section called MISPC Reference Implementation in Chapter 7. It is available as
NIST Special Publication 800-153 from the NIST WWW site.
Another interesting document is the Proposed Federal PKI Concept of Operation4.
Among the highlights of the above document is the clear description of available PKI
types. The PKI that the browsers implement is described as the trust-list PKI. This
is a somehow flat type of PKI in the sense that there is only one level of trust. The
other two types are the hierarchical and the network (or mesh) PKIs. The former is
the typical X.500 PKI while the latter is the mesh type with no single root. One can
find analogies of the hierarchical PKI with the structure of the Domain Name Service.
The network PKI is like the interconnection of the routers on the Internet.
Another important issue is the same document, is the use the Bridge Certification
Authority concept, a CA that bridges different trust domains. This bridging is es-
tablished upon agreement of the interested parties and its purpose is to limit the
propagation of unnecessary trust.
A pilot program is planned to test the bridge CA concept. From the information pro-
vided at the NIST PKI Root CA Testbed5 page, the Bridge CA will be implemented
by the NIST and commercial CAs will be tested by being bridged by this Bridge CA.
The plan is to have twelve CAs and 4 X.509 Directory servers operational. Informa-
tion to be sought from this pilot operation has to do with performance and scalability.
Finally, the X.509 certification path building and validation will be tested.
The author of these documents (either main author or in co-operation) is William E.
Burr6.

Notes
1. http://www.opengroup.org
2. http://www.opengroup.org/pubs/catalog/g801.htm
3. http://csrc.nist.gov/pki/documents/mispcv1.ps
4. http://csrc.nist.gov/pki/twg/baseline/pkicon20b.PDF
5. http://csrc.nist.gov/pki/rootca/
6. mailto:william.burr@nist.gov

16

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)
In this chapter, we shall provide an informal introduction to the PKIX Internet Stan-
dards which are being developed by the PKIX Working Group1.

Abbreviations
To avoid confusion regarding the PKIX terminology, we include the list of terms as
they are found in the PKIX document draft-ietf-pkix-roadmap-05. Their full ex-
planation can be found at the Glossary.

Table 6-1. PKIX Terms

Term Abbreviation
Attribute Authority AA
Attribute Certificate AC
Certificate
Certification Authority CA
Certificate Policy CP
Certification Practice Statement CPS
End–Entity EE
Public Key Certificate PKC
Public Key Infrastructure PKI
Privilege Management Infrastructure PMI
Registration Authority RA
Relying Party
Root CA
Subordinate CA
Subject
Top CA

With regard to the term X.509, it comes from the X.500 specification on directory
services. The directory services serve as a kind of electronic phonebook, where en-
abled applications can lookup included entities. Each entity has a identifying record
or Certificate and the format of that Certificate follows the recommendation X.509 of
the International Telecommunication Union (ITU).
X.500 itself is considered as too difficult to catch on, however, the X.509 format for cer-
tificates is used by succesive standards. For more information on X.500, one can read
the online book entitiled Understanding X.500 – The Directory2 by D.W.Chadwick.

Concepts
We describe important concepts with regard to the PKIX standards. A Public Key In-
frastructure does not only need an infrastructure to handle identities, it needs an in-
frastructure to handle privileges. The distinction between the two will become more
evident in the following sections.

17

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

Certificate–using Systems and PKIs
At the heart of recent efforts to improve Internet security are a group of security pro-
tocols such as Secure Multipurpose Internet Mail Extensions (S/MIME), Transport
Layer Security (TLS), and Internet Protocol Security (IPSec). All of these protocols
rely on public–key cryptography to provide services such as confidentiality, data in-
tegrity, data origin authentication, and non-repudiation. The purpose of a PKI is to
provide trusted and efficient key and public key certificate management, thus en-
abling the use of authentication, non-repudiation, and confidentiality.

Security services
Essential services to ensure the security on the Internet are confidentiality,
data integrity, data origin authentication and non–repudiation. These can
be achieved with protocols like S/MIME, TLS and IPSec . The protocols
need a PKI in order to function effectively.

Users of public key-based systems must be confident that, any time they rely on a
public key, the associated private key is owned by the subject with which they are
communicating. (This applies whether an encryption or digital signature mechanism
is used.) This confidence is obtained through the use of PKCs, which are data struc-
tures that bind public key values to subjects. The binding is achieved by having a
trusted CA verify the subject’s identity and digitally sign each PKC.
A PKC has a limited valid lifetime, which is indicated in its signed contents. Because a
PKC’s signature and timeliness can be independently checked by a certificate-using
client, PKCs can be distributed via untrusted communications and server systems,
and can be cached in unsecured storage in certificate-using systems.
PKCs are used in the process of validating signed data. Specifics vary according to
which algorithm is used, but the general process works as follows:

Note: There is no specific order in which the checks listed below must be made; imple-
mentors are free to implement them in the most efficient way for their systems.

• The recipient of signed data verifies that the claimed identity of the user is in ac-
cordance with the identity contained in the PKC;

• The recipient validates that no PKC in the path is revoked (e.g., by retrieving a
suitably-current Certificate Revocation List (CRL) or querying an on-line certificate
status responder), and that all PKCs are within their validity periods at the time the
data was signed;

• The recipient verifies that the data are not claimed to have any values for which
the PKC indicates that the signer is not authorized;

• The recipient verifies that the data have not been altered since signing, by using
the public key in the PKC.

If all of these checks pass, the recipient can accept that the data was signed by the
purported signer. The process for keys used for encryption is similar.

Note: It is of course possible that the data was signed by someone very different from
the signer, if for example the purported signer’s private key was compromised. Security
depends on all parts of the certificate-using system, including but not limited to: physical
security of the place the computer resides; personnel security (i.e., the trustworthiness
of the people who actually develop, install, run, and maintain the system); the security

18

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

provided by the operating system on which the private key is used; and the security pro-
vided the CA. A failure in any one of these areas can cause the entire system security to
fail. PKIX is limited in scope, however, and only directly addresses issues related to the
operation of the PKI subsystem. For guidance in many of the other areas, see RFC 2527.

Certificate–using Systems and PMIs
Many systems use the PKC to perform identity based access control decisions (i.e.,
the identity may be used to support identity-based access control decisions after the
client proves that it has access to the private key that corresponds to the public key
contained in the PKC). For many systems this is sufficient, but increasingly systems
are beginning to find that rule-based, role-based, and rank- based access control is
required. These forms of access control decisions require additional information that
is normally not included in a PKC, because the lifetime of the information is much
shorter than the lifetime of the public-private key pair. To support binding this infor-
mation to a PKC the Attribute Certificate (AC) was defined in ANSI and later incor-
porated into ITU–T Recommendation X.509. The AC format allows any additional
information to be bound to a PKC by including, in a digitally signed data structure, a
reference back to one specific PKC or to multiple PKCs, useful when the subject has
the same identity in multiple PKCs. Additionally, the AC can be constructed in such
a way that it is only useful at one or more particular targets (e.g., web server, mail
host).
Users of a PMI must be confident that the identity purporting to posess an attribute
has the right to possess that attribute. This confidence may be obtained through the
use of PKCs or it may be configured in the AC-using system. If PKCs are used the
party making the access control decision can determine "if the AC issuer is trusted to
issue ACs containing this attribute."

Overview of the PKIX approach
PKIX, in order to describe public–key infrastructures, uses the terms PKI and PMI.
One can find similarities between the two. The main difference is that the PKI handles
the Public Key Certificates while the PMI handles the Attribute Certificates. A good
metaphor to distinguish between the two is to associate the former with the passport
of a person and the latter with the visa. The one provides identity and the other
permission.

PKIX standardisation areas
PKIX is working on the following five areas.

1. Profiles of X.509 v3 Public Key Certificates and X.509 v2 Certificate Revocation
Lists (CRLs).
It describes the basic certificate fields and the extensions to be supported for
the Certificates and the Certificate Revocation Lists. Then, it talks about the
basic and extended Certificate Path Validation. Finally, it covers the supported
cryptographic algorithms.

2. Management protocols.
First, it discusses the assumptions and restrictions of the protocols. Then, it pro-
vides the data structures used for the PKI management messages and defines

19

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

the functions that conforming implementations must carry out. Finally, it de-
scribes a simple protocol for transporting PKI messages.

3. Operational protocols.
Currently they describe how LDAPv2, FTP and HTTP can be used as opera-
tional protocols.

4. Certificate policies and Certificate Practice Statements.
The purpose of this document is to establish a clear relationship between cer-
tificate policies and CPSs, and to present a framework to assist the writers of
certificate policies or CPSs with their tasks. In particular, the framework iden-
tifies the elements that may need to be considered in formulating a certificate
policy or a CPS. The purpose is not to define particular certificate policies or
CPSs, per se.

5. Time–stamping and data–certification/validation services.
There are no RFCs on these services yet, as the documents are still classified as
Internet Drafts.
The time–stamping services define a trusted third–party that creates time stamp
tokens in order to indicate that a datum existed at a particular point in time.
The data certification and validation services provide certification of possesion
of data and claim of possesion of data, and validation of digitally signed docu-
ments and certificates.

The relevant Request For Comments (RFC) documents are depicted in the following
table

Table 6-2. Table of RFCs for PKIX documents

Subject RFC
Profiles of X.509 v3 Public Key
Certificates and X.509 v2 Certificate
Revocation Lists (CRLs)

RFC 2459

PKIX Certificate Management Protocols RFC 2510
Operational protocols RFC 2559, RFC 2585, RFC 2560
Certificate Policy and Certification
Practices Framework

RFC 2527

Time–stamping and data–certification
services

No RFCs yet, only internet drafts
available

The specification of the X.509 Certificates is very general and extensible. To ensure
interoperability between different Internet-centric implementations, the PKIX Work-
ing Group defined a profile, which is a description of the format and semantics of
certificates and certificate revocation lists for the Internet PKI.
The operational protocols are the protocols that are required to deliver certificates
and CRLs (or status information) to certificate–using client systems. There is an em-
phasis to have a variety of distribution mechanisms for the certificates and the CRLs,
using for example, LDAP, HTTP and FTP. For example, the retrieval of the CRL by a

20

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

merchant to check whether a certificate is valid, constitutes an operational protocol.
Management protocols are the protocols that are required to support on–line interac-
tions between PKI user and management entities. The possible set of functions that
can be supported by management protocols is

• registration of entity, that takes place prior to issuing the certificate
• initialisation, for example generation of key–pair
• certification, the issuance of the certificate
• key–pair recovery, the ability to recover lost keys
• key–pair update, when the certificate expires and a new key–pair and certificate

have to be generated
• revocation request, when an authorised person advices the CA to include a specific

certificate into the revocation list
• cross-certification, when two CAs exchange information in order to generate a

cross–certificate

The Certificate Policies and the Certificate Practice Statements are recommendations
of documents that will describe the obligations and other rules with regard the usage
of the Certificate.

Public–key infrastructure functionality
This is a functionality or operations of a Public Key Infrastructure.

Table 6-3. PKI functionality

Functionality
Registration
Initialisation
Certification
Key–pair recovery
Key generation
Key update
Key expiry
Key compromise
Cross certification
Revocation
Certificate and Revocation Notice Distribution and Publication

Public–Key Infrastructure (PKI)
A PKI is a set of hardware, software, people, policies and procedures needed to cre-
ate, manage, store, distribute and revoke PKCs based on public–key cryptography.
A PKI consists of five types of componets.

21

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

Table 6-4. PKI components

Type of component Description
Certification Authorities (CAs) to issue and revoke PKCs
Organisational Registration Authorities
(ORAs)

to vouch for the binding between public
keys and certificate holder identities and
other attributes

Certificate holders to sign and encrypt digital documents
Clients to validate digital signatures and their

certification path from a known public
key of a trusted CA

Repositories to store and make available certificates
and Certificate Revocation Lists (CRLs)

In Figure 6-1 there is a simplified view of the architectural model assumed by the
PKIX Working Group.

Ce
rti

fic
at

e/
CR

L
Re

po
sit

or
y

RA

End entity

CA

CA

Operational
transactions and
management transactions

Publish certificate
Publish CRL Management

transactions

PKI management
entities

Management transactions
PKI users

Publish Certificate

Figure 6-1. PKI Entities

The End–entity, using management transactions, sends its certificate request to the
Registration Authority for approval. If it is actually approved, it is forwarded to the
Certification Authority for signing. The Certification Authority verifies the certificate
request and if it passes the verification, it is signed and the Certificate is produced.
To public the Certificate, the CA sends it to Certificate Repository for collection from
the End–entity.
The diagram shows that the End–entity can communicate directly with the CA. Ac-
cording to the PKIX recommendations, it is possible to implement the functionality
within the CA. Although it is a bit confusing, the diagram shows all possible com-
munications, regardless of the implementation decisions.

22

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

Additionally, both the CA and RA are shown to deliver Certificates to the repository.
Depending on the implementation, one of the two is chosen.
For the issue of the revocation of the certificates, a similar course with the generation
of the Certificates is taken. The End–entity asks the RA to have its Certificate revoked,
the RA decides and possibly forwards it to the CA, the CA updates the revocation list
and publishes it on the CRL repository.
Finally, the End–entities can check the validity of a specific Certificate using an oper-
ational protocol.

Privilege Management Infrastructure (PMI)
PMI is the set of hardware, software, people, policies and procedures needed to cre-
ate, manage, store, distribute and revoke Attribute Certificates.
A PMI consists of five types of componets.

Table 6-5. PMI components

Type of component Description
Attribute Authorities (AAs) to issue and revoke ACs (also called

Attribute Certificate Issuer)
Attribute Certificate Users to parse or process an AC
Attribute Certificate Verifier to check the validity of an AC and then

make use of the result
Clients to request an action for which

authorisation checks are to be made
Repositories to store and make available certificates

and Certificate Revocation Lists (CRLs)

In Figure 6-2 there is a view of the exchanges that may involve Attribute Certificates

23

Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)

AC Issuer

Server

Server
Lookup

Repository

Client
Lookup

AC "push"
(part of app. protocol)

Client
Acquisition

Server Acquisition

Client

Figure 6-2. Attribute Certificate Exchanges

There are two types of attribute certificate distribution as show in the diagram, push
and pull.
In some environments it is suitable for a client to push an AC to a server. This means
that no new connections between the client and server are required. It also means
that no search burden is imposed on servers, which improves performance.
In other cases, it is more suitable for a client simply to authenticate to the server and
for the server to request or pull the client’s AC from an AC issuer or a repository. A
major benefit of the pull model is that it can be implemented without changes to the
client or to the client–server protocol. It is also more suitable for some inter–domain
cases where the client’s rights should be assigned within the server’s domain, rather
than within the client’s domain.

Notes
1. http://www.ietf.org/html.charters/pkix-charter.html
2. http://www.salford.ac.uk/its024/X500.htm

24

Chapter 7. Open-Source Implementations
We are presenting a list of open–source or almost open–source implementations of
Public Key Infrastructures. In the following sections, we shall get into more detail for
each of the implementations.

1. pyCA, by Michael Stroeder, available at the pyCA WWW site1.
2. OpenCA, by Massimiliano Pala and the OpenCA Team, available at the

OpenCA WWW site2.
3. Oscar, by DSTC Pty Ltd, Australia, available at the DSTC PKI WWW site3.
4. Jonah, by IBM (and subsidiaries Lotus, Iris), available at the Jonah WWW site4.
5. Mozilla Open Source PKI projects, by the Mozilla Organisation, available at the

Mozilla WWW site5.
6. MISPC, by the National Institute of Standards and Technology (NIST) available

at the MISPC WWW site6.

The pyCA Certification Authority
pyCA is a set of CGI scripts that provide a WWW interface to a Certification Author-
ity. The scripts are written in the programming language Python7, hence the name
pyCA. It uses OpenSSL as the underlying mechanism for the cryptographic infras-
tructure. pyCA is distributed under the GPL8 license.

The OpenCA Project[TODO]
OpenCA is a collaborative effort to create a public–key infrastructure. Programmat-
ically, it resembles pyCA with the exception of using Perl instead of Python for
the CGI scripts. It uses OpenSSL for the underlying cryptograpgic infrastructure.
OpenCA is distributed with an Apache–style license.

25

Chapter 7. Open-Source Implementations

OpenCA Layout
We describe the CA structure as used currently in OpenCA.

Authority
Certification

(CAServer)

Not-networked

manually

Authority
(RAServer)

Registration

(RAOperator)
RA Operator #1

(RAOperator)
RA Operator N
(RAOperator)

RA Operator #2

Connection to Internet

Networked

Communication (RAServer/RAOperators)

Figure 7-1. Current OpenCA Layout

The Certification Authority –– for security reasons and in accordance with the current
layout –– should not be networked. It manually communicates with the Registration
Authority, perhaps using removable media.
The Registration Authority should not have direct access to the Internet but be ac-
cessed through the RA Operator.
The RA Operator is the interface of OpenCA between users and the Internet.

OpenCA Abbreviations
Throughout the documentation we use the following terminology.

Table 7-1. OpenCA Abbreviations

Term OpenCA Object Name
Certification Authority CAServer
Registration Authority RAServer
RA Operator RAOperator

Note: The reader should notice the difference between the CA as an organisation or a
company and the CA as CAServer. Currently, we do not differentiate explicitly and the
user has to identify the correct meaning by the context.

26

Chapter 7. Open-Source Implementations

Note: In several parts of the documents we use the terms Certificate Signing Request and
requests to describe the same thing. The latter term is common in programming contexts.

Software packages
This is the basic software used to implement OpenCA. Current (May, 2000) versions
are depicted in the table following the list.

1. Compatible Operating system like Linux ®, available from
http://www.linux.org

2. OpenSSL, available from http://www.openssl.org
3. Apache WWW Server, available from http://www.apache.org
4. mod–ssl Apache module, available from http://www.modssl.org
5. OpenLDAP, available from http://www.openldap.org

We subsequently install the OpenCA software. At the time of writing, the latest ver-
sion is 0.2.0, available at http://www.openca.org/download.shtml14

Table 7-2. Current Versions of OpenCA prerequisite software

Software Current version
RedHat®Linux 6.2

OpenSSL SSL/TLS software 0.9.5a

Apache WWW Server 1.3.12

modssl SSL/TLS Apache module 2.6.4

OpenLDAP LDAP software 1.2.10

Perl interpreter 5.6.0

Functionality of the CA Server (CAServer)
The functionality of the Certification Authority Server is:
The source code describes the CA server as CAServer.
The following sections and subsections are the options presented to the user by the
WWW interface to administer the CA. This interface is the recommended method of
administration.

Note: The content of this section is subject to change in the future.

Initialisation / CA Management

• Generate new CA private key
This procedure is described in the Section called Generate the RSA key–pair for a user/server in Chapter 4.
Generating a new secret (private) key for a CA and overwriting the old one is an

27

Chapter 7. Open-Source Implementations

important procedure, since previously–issued certificates become invalid. The
user is warned that the current CA private key will be overwritten.

Note: In fact, with the current version of OpenCA, the previous current key is not over-
written, as the software saves the current key in a file with an extension of .old. However,
previous any previous keys are overwritten.

The user is prompted with a dialog box for the CA secret key. This CA secret key is
in fact the pass–phrase that protects the CA private key. For example, if we use RSA
as the public key algorithm, the key generation procedure generates a set of very
large numbers. A part of them constitute the private key. This information must not
be compromised. In order to make it more secure, we encrypt this information with
a block cipher like DES, Triple–DES or IDEA. Subsequently, when there is a need
to have the value of the private key, the application asks us for the pass–phrase,
decrypts the encrypted private key, and uses it.

Note: Safe choices for an encryption algorithm are Triple–DES (3DES or sometimes
written DES3) and IDEA. DES is not considered a safe choice, unless key recovery
is an issue. :) Apart from the joke, the user should be aware that using high–grade
encryption does not mean that the system is secure. All components of a system need
to be secure in order to have a secure system. In the case of OpenCA, there are a lot
of components.

Note: It is common practice that once the private key is used by the application, it
should not be kept in the computer’s memory any longer. When there is a need for the
private key, the application should ask for it. This is more secure but requires human
intervention when there is a need for the private key. For example, when we need to
restart a server.

Next the user is asked for the size of the CA key in bits. This is the size of N in
RSA, the product of the two large prime numbers. This affects the security of the
Certification Authority.
A choice of 512 bits is not considered safe while one of 1024 bits is considered
relatively safe. 2048 bits are considered to be a secure choice with current (May,
2000) information about factorisation.

Note: Consider that when the key length rises, so does the time needed to generate
and do operations with the keys. For instance, on a Pentium® Pro computer, generating
a key of size 1024 bits requires approximately 3 seconds; 2048 bits requires around
13 seconds. The tests were carried out using the OpenSSL software and running the
Linux® operating system. Key generation takes place once in the lifetime of the key.
Other operations, like the signing and verification of digital signatures, take place more
frequently and remain to be benchmarked.

Note: With Pentium® II or better computers, the size of 2048 bits is both a fast and
secure choice. Once we click OK, the key–generation takes place. This takes several
seconds. The user should wait for it to complete.

You can find a sample encrypted private key in PEM format at
the Section called Sample Encrypted Private Key in PEM format (2048 bits) in Appendix B.

28

Chapter 7. Open-Source Implementations

• Generate new CA Certificate Signing Request
This is the procedure described in the Section called Generate a certificate request in Chapter 4.
Essentially, the certificate request is generated to be later self–signed with the
public key of the CA, generated with the previous option.

• Export CA Certificate Request
This option exports the CA certificate request generated above. A file is created in
the file system that corresponds with the CSR.

• Generate Self–Signed CA Certificate
This option uses the generated CSR to create the CA Certificate. It signs it with the
public key of the CA.

• Export CA Certificate
This option exports the generated CA Certificate or as it is sometimes called, the
Root CA Certificate. Copies of this Certificate should be given to the public.

Requests

• Import requests
This imports requests (CSRs) for signing to the CA. The RAServer Administrator
has used the Export requests command to export the Certificate Signing Requests to,
possibly, a removable medium. With this command, the CAServer Administrator
will retrieve them for signing.

• Pending requests
This shows the pending requests that reside on the CA. We should note that as re-
quest we describe the Certificate Signing Request. Pending requests are the requests
that have been uploaded to the Certification Authority and wait to be signed.

Note: The same terminology, pending requests is used on the Registration Authority
with a different meaning. On the Registration Authority, a pending request is a Certifi-
cate Signing Request that remains to be approved by the Registration Authority Admin-
istrator and be sent over to the Certification Authority.

• Deleted Requests
This shows the deleted requests to the CA. A Certificate Signing Request that has
been uploaded to the Certification Authority may not be finally granted permission
and be signed. With the current layout of the relationship of the CAServer and the
RAServer, the RAServer signs each Certificate Signing Request with its own private
key. The CAServer checks the signature and if it is verified, it creates the Certificate.
Otherwise it deletes it and it is shown here.

• Remove Deleted Requests
29

Chapter 7. Open-Source Implementations

This removes the deleted requests from the CA. It means that the requests are phys-
ically removed from the file system of the CAServer.

Certificates

• Issued Certificates
This shows all Certificates ever issued by the Certification Authority.

• Export Certificates
This exports the Certificates to a removable media in order to be delivered to the
RAServer. It is the responsibility of the RAServer to distribute the Certificates to
the individual owner.

Certificate Revocation List CRL

• Export CRL
This exports the Certificate Revocation List to the RAServer. The RAServer has the
responsibility to make the Certificate Revocation List known and available to the
individual users.

Functionality of the RA Server (RAServer)
This is the functionality of the Registration Authority (RAServer) Server. The various
local Registration Authority Operators communicate with this intermediary on be-
half of the users’ requests, in order to have access to the CA. No user communicates
directly with the RA server. The RA server should be placed at a very high security
level to prevent unauthorized access. The RA Server is administered by the Registra-
tion Authority Administrator. The actions available are listed next.
While perusing the source code, you will see the principal Registration Authority
Server to be described as RAServer.

Note: The content of this section is subject to change in the future.

Requests

• Export Requests
Export the approved requests to the CAServer.

30

Chapter 7. Open-Source Implementations

• Pending Requests
Show Certificate Signing Requests waiting for approval by the RAServer Admin-
istrator. Approval can be based to Identification Documents or other credentials.

• Approved Requests
Show Certificate Signing Requests that have already been approved by the
RAServer Administrator. These Certificate Signing Requests will be sent to the
CAServer using the Export requests function.

• Remove Exported Requests
The approved requests, once they are exported to the CAServer, can be removed
with this option.

Certificates

• Import CA Certificate
This imports the Certification Authority Certificate and saves it on the local filesys-
tem. This copy of the Certificate will be published using the adjacent commands to
the interested parties.

• Import New Certificates
This imports the newly signed Certificates from the CAServer. The Certificates are
copied to the local file system.

• Export Certificates onto LDAP
This command exports the Certificates to the specified LDAP server. The users
will retrieve their Certificate by accessing the LDAP server, rather then contacting
directly the RAServer.

Certificate Revocation List CRL

• Import CRL
This imports the Certificate Signing Request from the Certification Authority so
that it can be published.

• Export Certificate Revocation Requests
This command exports approved Revocation Requests to the CAServer. Then, the
CAServer revokes these Certificates.

31

Chapter 7. Open-Source Implementations

Miscellaneous Utilities

• Send e–mail to users for newly–issued certificates
This informs the users that the Certificate has been prepared and that they should
follow the indicated procedure to collect it.

• Delete Temp files (After importing certificates).
This is a clean–up command. With the current implementation of OpenCA, when
the users are being sent a notification, temporary files are created to indicate the
e–mail to be sent. If these files are not deleted, then, on the next batch mailing,
users who have already received a notification are notified again.

Functionality of the RA Operators (RAOperators)
The Public Servers, –– the servers that the users actually have access to –– are se-
curely–configured servers that ask for Certificates, deliver them, and so on. This is
the only entry point to the CA infrastructure from the Internet.
The source code describes the local Secure RA servers as RAOperators.

Note: The content of this section is subject to change in the future.

Get Root CA Certificate
This allows the user to import the root Certificate of the Certification Authority into
the browser. This is a basic and important procedure. It takes place once in the
life–time of the Certification Authority Certificate. Other documentation describes
this Certificate as the Root Certificate. It is the starting point to enable the client to
communicate securely with the Certification Authority.

Certificate Revocation Lists
This brings up the Certificate Revocation List page. Here the Certificate Revocation
List, produced by the Certification Authority is imported into the browser or other
application.

• OpenCA’s Certificate Revocation List (DER format)
With this option, a browser–importable Certificate Revocation List is generated to
be automaticaly included in the CRL list of the browser. The CRL is in the DER
format.

• OpenCA’s Certificate Revocation List (PEM format)

32

Chapter 7. Open-Source Implementations

With this option, the Certificate Revocation List is generated into the PEM format.
Similar to above.

• OpenCA’s Certificate Revocation List (TXT format)
With this option, the Certificate Revocation List is generated into text format. The
file generated by this command can be very big.

Request a Certificate
Initiate the procedure to request a certificate.

Get Requested Certificate
This allows the user to retrieve the issued certificate and subsequently import it to
the application. The user has received the notification e–mail from the Registration
Authority and is prompted with intructions to retrieve the Certificate. In the e–mail,
there is a serial number of the Certificate that has to be presented to the RAOperator
in order to retrieve the Certificate. The serial number serves as an identification as to
which Certificate will be retrieved. It is not used for authentication purposes.

Issued Certificates List
This option presents a list of the issued certificates of this Certification Authority.

Status of the OpenCA Project
The OpenCA Project is evolving quickly. The current version at the time of writing
(May, 2000) is 0.2.0. Latest release information can be found at the OpenCA Status15

page.

Future OpenCA work
This section describes the future work needed for OpenCA.

• The current layout of OpenCA (see Figure 7-1) is not yet scalable to support mul-
tiple CAServers or RAServers. Currently this is not a high–priority issue as it is
more important to come up with a simple, secure, and clean implementation of a
CA.

• Do more work on the LDAP support.
• Also, there are scalability issues with high usage of OpenCA. The current imple-

mentation uses Perl CGI scripts. These scripts invoke the openssl application.
The overhead of invoking these two big executables (perl and openssl) is con-
siderable. Depending on the hardware configuration, there is a limit where the
physical memory becomes exhausted. The system starts swapping heavily and the
load goes high.
Possible solutions here would be to make use of mod-perl for the Apache WWW
Server. This adds a new component that needs to be included in a future security
review.

33

Chapter 7. Open-Source Implementations

Calling the OpenSSL library would be much more efficient than invoking the
openssl application. Both Perl and C support library function invocation.

• In the current OpenCA layout (see Figure 7-1) the CAServer is shown to not be net-
worked. It communicates with the RAServer using removable media. There could
be a solution that allows a networked configuration and maintains a high degree
of security.

• A test–suite is needed to test the installation for correctness and provide an esti-
mation of thoughput capabilities. For the current implementation of OpenCA ap-
plications like cURL could be used to write a test–suite. cURL supports SSL/TLS
connections. It is an open–source command–line application. It is found at cURL -
Client to fetch URLs 16 link.

• OpenCA software and its components require a security review.
• Smart cards could be used in The OpenCA Project. Linux® supports smart cards.

Information is at MUSCLE Smartcard Home Page17. MUSCLE supports PC/SC and
OCF (through JNI). The PC/SC support is more complete and could provide the
necessary performance needed. Also, it can be accessed through Perl and C.

• OpenCA could be implemented in various other languages. The decision for this
should be the weighing of the benefits and the source–code fork problem.

• Internationalisation of OpenCA. This could be accomplished with the gettext sup-
port that perl has. However, this should wait until the software has been stabilised.

The Oscar Public Key Infrastructure Project
Oscar is a project of the Distributed Systems Technology Center of the Queensland
University of Technology to create a public–key infrastructure. It implements the
cryptographic functions using directly the GMP library, unlike other implementa-
tions that use OpenSSL. The programming language chosen is C++.
The licensing of Oscar allows the non-commercial usage of the software. To use it
commercially, one needs to obtain a license. This is not compatible to either the GNU
or the Apache style license.

Jonah: Freeware PKIX reference implementation
Jonah is a freeware (term used by IBM, it is not mentioned as open–source) imple-
mentation of the available PKIX standards for a public–key infrastructure. It is one of
the implementations that was designed to follow the PKIX standards from the begin-
ning and it generated important feedback to the standardisation process. The core of
Jonah is written in C++ and the server components are accessed using Java applets.
The C++ code is compatible with Windows NT, Solaris and AIX. We must emphasise
that Jonah was written basicaly for the internal purposes of IBM and its subsidiaries
Lotus and Iris as an interoperability tool between different implementations and to
be part of future IBM products.
There is no Linux port yet, and this can be attributed to several issues. The
development environment chosen initially was making use of the MKS Toolkit,
which provides a Unix-like environment to Windows NT. In the next version, the
ODE environment was chosen. Both are incompatible with Linux and require some
work to make them work together. Additionally, for the cryptographic support one
would need to use the Cylink crypto libraries, which at the moment were export
restricted. In the next version, there the BSafe Toolkit from RSA Security was chosen.

34

Chapter 7. Open-Source Implementations

Cryptographically-wise, BSafe is much more mature and popular. However, it is a
commercial product and it remains to have investigated its licensing issues.
Jonah provides transparency to the choice of cryptographic support by making use
of the Common Data Security Architecture (CDSA). The Common Data Security Ar-
chitecture (CDSA) is a set of layered security services and cryptographic framework
that provide the infrastructure for creating cross-platform, interoperable, security-
enabled applications for client-server environments. The CDSA solutions cover all
the essential components of security capability, to secure electronic commerce and
other business applications with services that provide facilities for cryptography, cer-
tificate management, trust policy management, and key recovery. CDSA was devel-
oped by Intel and is being standardised by OpenGroup.
Jonah is not distributed with the full functionality due to the crypto issues. To be
precise, Jonah is not available at the moment due to a mysterious licensing issue with
the CDSA support. It is claimed that Intel, by releasing version 2 of CDSA, has made
the version of CDSA used by Jonah illegal to distribute. The last free distribution of
Jonah was using version 1.2 of CDSA.
Jonah is distributed under this18 license.

Mozilla Open Source PKI projects
Currently, the software application that makes most use of PKI technology is the
WWW browser. This importance was realised by Netscape and has lead to the cre-
ation of two libraries to aid the unified support of cryptography and security for
both the browser and server software. These libraries are the Network Security Ser-
vices (NSS) and the Personal Security Manager (PSM) and provide the functionality
of a PKI.
These libraries are also plagued with the export–control regulations and currently it
is under consideration to receive an export license. However, in this case, there is an
additional problem with the patents and the licenses that covers parts of the crypto-
graphic software that makes the release of the source code even more difficult. Cur-
rently, the source code distributed does not contain the full functionality and thus,
cannot be compiled. The result of this procedure remains to be seen. On the other
hand, binary version of these libraries are both available and exportable from the
US. For more information on the licensing and crypto issues, there is an appropriate
Mozilla Crypto FAQ19.
These libraries (with the exclusion of code on crypto and patented components by
third–parties) are covered by the Mozilla Public License20 and the GNU General Pub-
lic License21. The use is free to choose under which of the two licenses to use the
source code, either the MPL terms or the GPL terms.

Personal Security Manager (PSM)
Personal Security Manager (PSM) is a client-independent desktop security module.
It performs PKI operations on behalf of desktop client applications, including certifi-
cate and key management, SSL, S/MIME, cryptographic token support, and central-
ized administration.
More information can be found at the Personal Security Manager (PSM)22 WWW
page.

Network Security Services (NSS)
Network Security Services (NSS) is a set of libraries designed to support
cross-platform development of security-enabled server applications. Applications

35

Chapter 7. Open-Source Implementations

built with NSS can support SSL v2 and v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS
#12, S/MIME, X.509 v3 certificates, and other security standards.
More information can be found at the Network Security Services (NSS)23 WWW
page.

JavaScript API for Client Certificate Management
As part of the Personal Security Manager, a new JavaScript API for
Client Certificate Management has been implemented. The effect of this
is that specific client PKI functionality can move to the browser, allowing
implementations like the Section called The OpenCA Project[TODO] and
the Section called The pyCA Certification Authority to fully take advantage of it.
This is the functionality supported by PSM version 1.0.

1. User fill out enrollment form.
2. User action initiates script (for example, pressing submit).
3. The script calls the key–generation method.
4. Encryption and Signing key–pairs are generated.
5. The Encryption Private Key is wrapped with the the public key of the Key Re-

covery Authority (KRA). The public key of the KRA is passed in in the form of
a certificate as part of the script and is checked against a pre–installed certificate
copy in the local certificate database.

6. Both the Encryption and Signing Public keys, the wrapped encryption public
key and a text string from the script are signed by the user’s Signing Private
Key. The text string can contain naming or enrollment information.

7. The signed information is returned to the script (from the PSM).
8. The script submits the signed information and other necessary information to

the CA/RA.
9. The CA/RA verify the signature of the signed information.

10. The CA/RA validate the identity of the user.
11. The CA/RA sends the wrapped Encryption Private Key to the KRA.
12. The KRA sends escrow verification information back to the CA.
13. The CA creates and signs the certificates.
14. The CA sends the created certificates back to the PSM–capable browser.
15. The certificates are stored.

More information can be found at the JavaScript API for Client Certificate
Management24 WWW page.

MISPC Reference Implementation
The National Institute of Standards and Technology of the U.S. government (NIST)
developed the Minimum Interoperability Specifications for PKI Components
(MISPC), Version 125 with the assistance of ten partners: AT&T, BBN, Certicom,
Cylink, DynCorp, IRE, Motorola, Nortel (Entrust), Spyrus, and Verisign. The
specification includes a certificate and CRL profile, message formats and basic
transactions for a PKI issuing signature certificates. Also, it includes support for
multiple signature algorithms and transactions to support a broad range of security
policies.

36

Chapter 7. Open-Source Implementations

Along with the specification, there is a reference implementation that is available
only by ordering a CDROM from NIST. The CDROM does not contain support for
the cryptographic module. This implementation appears to run only on Windows.
The source code is in C++.
More information on the reference implementation can be found at the MISPC Ref-
erence Implementation26 WWW page.

Notes
1. http://sites.inka.de/ms/python/pyca/
2. http://www.openca.org
3. http://oscar.dstc.qut.edu.au/
4. http://www.foobar.com/jonah/
5. http://www.mozilla.org/projects/security/pki/
6. http://csrc.nist.gov/pki/mispc/welcome.html
7. http://www.python.org
8. http://www.gnu.org/copyleft/gpl.html
9. http://www.linux.org
10. http://www.openssl.org
11. http://www.apache.org
12. http://www.modssl.org
13. http://www.openldap.org
14. http://www.openca.org/download.shtml
15. http://www.openca.org/docs/releases/
16. http://curl.haxx.nu/
17. http://www.linuxnet.com/
18. http://www.foobar.com/jonah/Jonah-License.html
19. http://www.mozilla.org/crypto-faq.html
20. http://www.mozilla.org/MPL/
21. http://www.gnu.org/copyleft/gpl.html
22. http://www.mozilla.org/projects/security/pki/psm/
23. http://www.mozilla.org/projects/security/pki/nss/
24. http://docs.iplanet.com/docs/manuals/psm/11/cmcjavascriptapi.html
25. http://csrc.nist.gov/pki/mispc/welcome.html
26. http://csrc.nist.gov/pki/mispc/refimp/referenc.htm

37

Chapter 7. Open-Source Implementations

38

Chapter 8. How to get software support
Open–source PKI implementations use other open–source applications and libraries
as shown in the Section called Useful open–source software in Chapter 4. We give gen-
eral pointers to the different components that a typical implementation may use.

Table 8-1. WWW Support Locations

Software Support page
RedHat™Linux RedHat™Linux Support Center 1

SuSE Linux SuSE Support Page1

Caldera™Linux Caldera™Support Programs1

Debian Linux Debian Support Page1

Corel™Linux Corel™ Support1

OpenSSL SSL/TLS software OpenSSL Support Page1

Apache WWW Server Apache Documentation1

modssl SSL/TLS Apache module Support Forums1

OpenLDAP LDAP software Technical Support1

Perl programming language Enterprise Support1

39

Chapter 8. How to get software support

40

Chapter 9. Supported Crypto hardware and Software
architectures

We provide a short list of compatible with Linux hardware that can be used for the
implementation of a Public Key Infrastructure. Currently we focus on crypto hard-
ware acceleration expansion cards and smart cards.
For the succesfull use of smart cards, a programming interface to the smart card needs
to be implemented. Currently, there are two such standards that describe interfaces
to access a smart card from a computer. The first is PC/SC1 which was originally de-
veloped for the Windows platform and the latter is the OpenCard Framework (OCF)2

which is a cross–platform solution, since it uses Java.

TrustWay Crypto PCI 2000
Bull3 manufactures a cryptographic accelerator called TrustWay Crypto PCI 2000.
Cryptographic accelerators and other hardware devices can be accessed from the
applications using the Common Data Security Architecture (CDSA). Bull has
created a Linux implementation of CDSA and is selling a VPN product that bundles
both the implementation and the hardware device. For more on CDSA, please read
the Section called Common Data Security Architecture (CDSA). For the part of the
cryptographic accelerator, it can be sold seperately for about 2500 Euros.

PowerCrypt Encryption Accelerator
Global Technologies Group, Inc.4 sells the PowerCrypt Encryption Accelerator, a
hardware crypto accelerator that is compatible with OpenBSD, FreeBSD and Linux.
It is based on the HiFn 77515 crypto acceleration chip that is compatible with
the IPsec standards. Currently it only supports symmetric cryptography while
assymetric cryptography is planned for the future.

CryptoSwift eCommerce Accelerator
Rainbow Technologies6 manufacture a set of cryptographic hardware products and
they offer good support for open–source operating systems. One of their products
is the CryptoSwift eCommerce Accelerator7, which is a hardware crypto accelera-
tor that supports, among others, RSA, DSS, random number generation and secure
storage of private keys. For Linux, a binary kernel module is included.
At Rainbow’s ISG Labs8, one can find performance data and other information re-
lating to benchmarking of the product in common test cases. For open–source ap-
plications, a comprehensive study On the performance of Stronghold/Apache+SSL
secure web servers9, shows significant gains using hardware acceleration.
Interested parties can apply to qualify for a demo card10. They need to describe a
project that they will be undertaking.
Finally, there is the CryptoSwift Software Development Kit11 to aid the development
of hardware crypto accelerated software.

Movement for the Use of Smart Cards in a Linux Environment
(MUSCLE)

MUSCLE12 provides support for smart cards for the Linux operating system. Among
the project goals are the implementation of the PC/SC standard for accessing smart
cards, better S/MIME integration with the Netscape browser, drivers for cards and

41

Chapter 9. Supported Crypto hardware and Software architectures

card readers and PAM support smart card authentication. Additionally, this PC/SC
implementation can be used as an abstraction layer to enable OCF applications to
operate.

Linux Smart Card Starter’s Kit from Schlumberger
Schlumberger13 produces the Cyberflex14 range of smart cards. The flagship Cyber-
flex™ card currently is the Cyberflex™Access smart card and it supports strong cryp-
tography. Schlumberger offers the Cyberflex for Linux Starter’s Kit 2.115 which is a
collection of hardware and software needed to program the Schlumberger Cyberflex
Access cards on Linux. The source code of the software is included in the Kit. The
product ships with two Cyberflex Access Cards, Class 00, Augmented Crypto and
may be purchased with or without the Reflex 64 Serial Port Smart Card Reader with
a PIN Pad.

The gpkcs11 PKCS#11 open–source implementation
gpkcs1116 is an implementation of the PKCS #11: Cryptographic Token Interface Stan-
dard, available under the LGPL distribution license.
PKCS#11 defines an interface for the communication of arbitrary applications with
systems that perform cryptogrphic operations, like encryption and decryption, sign-
ing and verifying. These systems, called tokens, may be smart cards (with appropriate
reader), discrete hardware systems or pure software implementations.
The gpkcs11 software is intended to be used by software developers to integrate
PKCS#11 support to their applications. It is currently under development and at the
moment of writing this document, the latest version is 0.6.1.

Common Data Security Architecture (CDSA)
CDSA17 eases the process of adding security to software products. By writing to one
common API, a software developer can add authentication services (such as smart
card readers), encryption services (such as DES) and the ability to manage security
processes (key recovery, export restrictions, prevention of attacks on the internal soft-
ware pieces).
CDSA is a specification developed by Intel and the current version, version 2 has
been adopted by the The Open Group18 as an Open Group Technical Standard in
1997. The CDSA standard is available in hard–copy and electronic form (HTML and
PDF) from the Common Security: CDSA and CSSM, Version 2 (with corrigenda)19

page at the The Open Group website.
Currenly, the source code of CDSA is available for the Windows platform. Intel, along
with Caldera Systems20 and the Bull TrustWise21 organisation are developing a Linux
port of CDSA and it is expected that it will be available in September 2000.
In order for CDSA to be usable in Linux, it needs software cryptographic support for
symmetric and asymmetric cryptographic algorithms. For the previous version of
CDSA, version 1.2, there was no publicly available cryptographic support or Crypto-
graphic Service Provider (CSP) as it is called. CSPs can come in two flavours, hard-
ware implementation on an expansion card or a software version. For development
purposes, it is important to have at least a software version.
CDSA has adaptation layers to use existing cryptography software for CSPs and it
is possible, in the case there is no native CDSA CSP for Linux, to use one that has
OpenSSL as the backend. Such a CSP based on OpenSSL was announced on the Jonah
mailling list, however the correspondance e–mail to the free e–mail account does not
seem to be active. However, with the newer revision 1.3 of CDSA 2.0, there is official

42

Chapter 9. Supported Crypto hardware and Software architectures

support for use of OpenSSL as a plug–in for a CSP. This is very positive news for the
soon to come Linux port.
Among the future plans for the implementation of CDSA 2.022 is the Linux support
for the Itanium™ processor.
The implementation of CDSA 2.0 that is provided by Intel is distributed under the
Intel Open Source License23 which is the BSD license24 with an additional export

notice. This license has been reviewed and approved by the Open Source Initiative
(OSI)25, so this implementation of CDSA is OSI Certified Open Source software.

Single Sign–on
Single Sign–On (SSO) is a mechanism whereby a single initial action of user authen-
tication and authorisation can permit the user to access all computer resources where
she has access persmission without the need to authenticate/authorise subsequent
times.
Among the benefits of SSO is the transparency of usage of a computer system where
full access control takes place but the user is not encumbered by repeated authenti-
cations and authorisations. SSO in a nutshell requires applications to use a common
security mechanism and make use of the user credentials for all the session access
control requirements.
The The Open Group26 has standardised the Pluggable Authentication Mechanism
(PAM) and the corresponding standard is available at the X/Open Single Sign-On
Service (XSSO)27 page. A general description of the SSO standard can be found at the
Single Sign-On28 page.

The KeyMan PKI Management Tool
KeyMan29 is a management tool for the client side of the Public Key Infrastructure.
KeyMan is a management tool for the client side of the public key infrastructure
(PKI). KeyMan manages keys, certificates, certificate revocation lists (CRLs), and the
respective repositories to store and retrieve these items. The full life cycle of certifi-
cates is supported and processes involved in handling user certificates.
KeyMan features at a glance:

• Full support of user certificate life cycle
• Management of various key/certificate repositories
• Supports cryptographic tokens via PKCS#11 interface
• Ready-to-go support for IBM Smart Card for e-Business (IBM JavaCard)
• X.509/PKIX (certificates V3, CRLs V2) supported
• Compliant with PKCS standards (#7,#10,#11,#12)
• Supports Netscape certificate requests (SPKAC)
• Integration with VeriSign and other CAs
• 100% Java, runs on JDK 1.1/1.2
• Easy to use GUI

KeyMan was developed by Thomas Eirich 30 of the IBM Zurich Research Laboratory.

43

Chapter 9. Supported Crypto hardware and Software architectures

Distributed Audit Service (XDAS)
The purpose of security audit services is to provide support for the principle of ac-
countability and detection of security-policy violations in distributed systems. The
XDAS specification defines a set of generic events of relevance at a global distributed
system level, and a common portable audit record format to facilitate the merging
and analysis of audit information from multiple components at the distributed sys-
tem level. Four groups of APIs are provided to accomplish this. Source XDAS Open
Group Preliminary Specification page31.
The HTML and PDF version of the above specification is available from the XDAS
Open Group Preliminary Specification page32. A hard copy is also available for pur-
chase from the same page.

Generic Security Service API (GSS-API)
GSS-API is a application programming interface that provides security services to
software. The definition of the API allows different software to be written and work
on all compliant GSS-API library implementations. GSS-API is defined in RFC 1508
and RFC 1509.

Simple Network Time Protocol (SNTP)
SNTP is an adaptation of the Network Time Protocol (NTP) used to synchronise com-
puter clocks in the Internet. SNTP is described in RFC 1769.

Lightweight Directory Access Protocol (LDAP)
LDAP is a protocol used to access directory services. It was originally designed to
be used with the X.500 directory. However, it is currently used as a generic directory
access protocol. The core of LDAP is described in RFC 1777.

S/MIME CMS [TODO]
S/MIME defines a framework within which security services may be applied to
MIME body parts. S/MIME is described in RFC 1847.

Notes
1. http://www.pcscworkgroup.com/
2. http://www.opencard.org
3. http://www.bull.com
4. http://www.powercrypt.com/
5. http://www.hifn.com/
6. http://www.rainbow.com
7. http://isg.rainbow.com/products/cryptoswift.html
8. http://isglabs.rainbow.com/
9. http://isglabs.rainbow.com/isglabs/shperformance/SHPerformance.html
10. http://isg.rainbow.com/qrf_free.html
11. http://isg.rainbow.com/products/cs_3.html

44

Chapter 9. Supported Crypto hardware and Software architectures

12. http://www.linuxnet.com/
13. http://www.slb.com/
14. http://www.cyberflex.slb.com/
15. http://www.cyberflex.slb.com/Support/support-linux.html
16. http://www.trustcenter.de/html/Produkte/TC_PKCS11/1494.htm
17. http://developer.intel.com/ial/security/
18. http://www.opengroup.org
19. http://www.opengroup.org/publications/catalog/c914.htm
20. http://www.caldera.com/
21. http://www.servers.bull.com/trustway/
22. http://developer.intel.com/ial/security/plans.htm
23. http://developer.intel.com/ial/security/viewlicense.htm
24. http://www.opensource.org/licenses/bsd-license.html
25. http://www.opensource.org/
26. http://www.opengroup.org
27. http://www.opengroup.org/publications/catalog/p702.htm
28. http://www.opengroup.org/security/sso/index.htm
29. http://www.alphaworks.ibm.com/tech/keyman
30. mailto:eir@zurich.ibm.com
31. http://www.opengroup.org/pubs/catalog/p441.htm
32. http://www.opengroup.org/pubs/catalog/p441.htm

45

Chapter 9. Supported Crypto hardware and Software architectures

46

Chapter 10. Critical discussion[TODO]
Include info from "10 risks on PKIs", ellison/schneier. [TODO]
Security of a system is equal to the "security" of it’s weakest link. People don’t usu-
ally see all the links. People don’t count both network/human factors. From each
discipline, they stress the factor they have familiarity.
Should we have CA AND RA? Network security says it’s safer, layered security, hier-
archy, etc. Theoretic ppl says no much difference, or it is worse to have two different.
Standards (PKIX) propose to use an RA, although do not oblige.
Watch the interactions of your system to secure it.
Human factor is greatly ignored. CS disciplines ignore the study as too law-bound,
non-CS disciplines don’t have the whole picture. Is it important to study this one?
Can traditional methods solve the problem?
Who has the private key? It’s stored in a security module, right? If it fails, what hap-
pens? Have a backup? To store in different locations (geographically)? There was a
recent relevant discussion on those two MS keys.
We cannot draw the whole picture at once. We need to do it step by step. Open-Source
reference implementations, widely/wildly used can show the way. Need to test and
analyse feedback.
We need SSO software, openproject has PAM draft and it looks nice. There is a "killer"
applicance from Samba developers that does SSO?
CDSA version 2 is very nice and standardised. openproject tambien. Bull.fr has the re-
sponsibility for the Linux port or implementation, along with Intel. Results promised
in September 2000.
In the Department of Defense Appropriations Bill of the US for the year 2001 there
is a description of the budget allocations. The document mentions the budget for
the usage of PKIs and the recommendation is for $18.6m US dollars. It is important
to notice that the description of the expense is Information Assurance. The document
is available from the House Reports Online via GPO Access1 link as report number
106-644.

Notes
1. wais://wais.access.gpo.gov

47

Chapter 10. Critical discussion[TODO]

48

Chapter 11. Benefits of an Open–Source PKI
implementation[TODO]

We are providing a list of the benefits that an open–source implementation of a PKI
would have. We are investigating whether such an implementation will make an
impact to the standardisation process, to the adoption to PKIs, to the issue of inter-
operability among other implementations and the course of e–commerce.
A paper presented by the development team behind Jonah (TODO Add to bibliogra-
phy) showed several areas of the standards that needed correction or clarification.
An easily accesible and unencumbered PKI will let Internet users evaluate the bene-
fits of transparent security.
The Jonah case proved valuable to the testing of interoperability between PKI imple-
mentations.
E-commerce and PKIs?

49

Chapter 11. Benefits of an Open–Source PKI implementation[TODO]

50

Chapter 12. Trademarks
Linux® is a registered trademark of Linus Torvalds.
RedHat™ is a trademark or registered trademark of RedHat, Inc. in the United States
and other countries.
Pentium® is a registered trademark of Intel.
The modssl FAQ is copyrighted by Ralf S. Engelschall1.
All other trademarks and registered trademarks in this document are owned by their
respective companies.

Notes
1. http://www.engelschall.com/

51

Chapter 12. Trademarks

52

Chapter 13. Contributions
The chapter Chapter 2 has been taken from the SSLeay Certificate Cookbook1 written
by Frederick J. Hirsch.
The chapter Chapter 6 is based on the document draft-ietf-pkix-roadmap and
other documents produced by the PKIX Working Group.
The author would like to thank Massimiliano Pala and the OpenCA Group for writing
the OpenCA software.
Miguel Armas2, contributed in Appendix D and in
the Section called The OpenCA Project[TODO] in Chapter 7.
The author would like to thank Chris Mitchell3 for reviewing an earlier version of this
document. The author would like to thank Ted Rolle4 for proof–reading the initial
DocBook version of this document.
Readers are encouraged to send feedback and contributions to this document. Users
may either use the ospkibook mailling list5 or send e-mail directly to the author6.

Notes
1. http://www.ultranet.com/~fhirsch/Papers/cook/ssl_cook.html
2. mailto:kuko@openca.org
3. mailto:C.Mitchell@rhbnc.ac.uk
4. mailto:ted@acacia.datacomm.com
5. http://sourceforge.net/mail/?group_id=6356
6. mailto:simos@hellug.gr

53

Chapter 13. Contributions

54

Appendix A. Perl modules

Locating Perl modules
Perl modules can be found at the Comprehensive Perl Archive Network (CPAN).
For more information on CPAN, please check the CPAN FAQ1. We list the current
versions at the time of writing. For the latest version, you may check the Modules
on CPAN alphabetically2.
You may also use one of the several mirror CPAN sites available around the
world for faster access. For a list of mirror sites, please check the MIRRORED.BY
list3. For an easy installation procedure, you may find this quickinstall4

script interesting. For manual installation of Perl modules, please check
the Section called Installing Perl modules.

Installing Perl modules

We assume that you are familiar with locating and retrieving the
Perl module of your interest. This is also described in detail in
the Section called Software installation sequence in Appendix D.
1. To install a Perl module, you need to uncompress and untar it.

user% tar xvfz a-perl-module-name.tar.gz

2. Enter the created directory and run
user% perl Makefile.PL

Note: You may get an error that a dependancy is not met. In this case, you need to
meet the requirement and try again. The most common case is that you need to install
another Perl module first.

3. Then run the make command.
user% make

4. Test the result with
user% make test

5. Complete the installation with
user% make install

Notes
1. http://www.perl.com/CPAN-local/misc/cpan-faq.html
2. http://www.perl.com/CPAN-local/modules/01modules.index.html
3. http://www.perl.com/CPAN-local/MIRRORED.BY
4. http://theoryx5.uwinnipeg.ca/auto/install.html

55

Appendix A. Perl modules

56

Appendix B. Sample Certificate Documents

Sample Encrypted Private Key in PEM format (2048 bits)
This is a sample private key in PEM format, encrypted with a pass phrase for more
security.

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,19BE1C31E4FD722A

jO1O1v2ftXMsawM90tnXwc6xhOAT1gDBC9S8DKeca..JZNUgYYwNS0dP2UK
tmyN+XqVcAKw4HqVmChXy5b5msu8eIq3uc2NqNVtR..2ksSLukP8pxXcHyb
+sEwvM4uf8qbnHAqwnOnP9+KV9vds6BaH1eRA4CHz..n+NVZlzBsTxTlS16
/Umr7wJzVrMqK5sDiSu4WuaaBdqMGfL5hLsTjcBFD..Da2iyQmSKuVD4lIZ
yPQqjHKT70kEuSz+vdKuAzoIGNCvgQxXyqKSSX7td..1r7GBbjlIT7xgo8B
LvNaqyvLW5qKCMfWSVJr7xnP1xUU3MVoahhUPxOKX..sEvVM+tkeSPh7GxF
U9OQ79lqjt5iZVSJOzRsgxZ66ZsrG5b3xL+FQf6z5..WUM1uVAJ9zVv6sYV
JURDlKbTkS2pm84CXI6TTJUx/msopB0MFJ+QRobLk..TtteSqpOQopTy7/k
WVoiZfbjIx5yzE0gC72E5bqn/kk7looqshvHt5o1T..OeJ06cGJz4o6bhvL
E7djV3lKpKI4xhxo9nLsij87ByU4pZPZwa3ahh02r..VhkUWPmqwElO9mSf
7QQjk4VpzzxuHx9XKPnYMOE9p8EEJiAyMW+Ms6blh..t3P9GPUJ9aRaH7yl
uUwJ2JXIZu1us4oObAi2mAmSWBebKiWQYBzuNDryK..iNAcY/7kndVqcxV2
PCFMM9TwsiJq6r38+CfvdIkol7sQcPf4us1fpVJSc..EB9U7obrrgX6s2PG
yye805Bd/4dIFb0CqYrejbBfl5ZDXpFIMCrpETEQG..AdnFGO3wysU/Eylu
qzIsBzPdGAoSqa/Y+jdpQRIpWK3vc+nVKMrAzDOC+..pp092QQvokWkyHzO
B4H4DDDuZo9lnt0YgUA0zN6BGhPh6VPys9NgoGPCu..XbymSIq0xLdm7Yb6
2lvmO9/MslBMwNphEWc4EkkUNaoPf6V8OZ33B81Ch..D0bIvA5RhgX3ysd1
sk7m2Q7oNdJWLX8IP9Ubz2L3VpQQ20Vd90yx26smE..xuNXLk0JAgVgagBK
7nbB88S60oXjF1lTckLPfZrCLjFW7M1A4m2f/Xbee..CcS0fPTKp7DF4dwn
ifDTV8A4wSCe+MqWuWqOzYcYE8PpsM7WL2xsV3yPe..X3PF2s/Xub84GPD+
cmYQxBoghfTFiFBmyR85ivc5c+jIxY1PF4r2cO5Gv..3PWTmv8/9W7QvL0g
LPp6cKH9b9d+DDueLvuF3GYG4RTdJrYpn8v7cX+jo..cML31exYsqzCHXad
TqFpESeSK0Zrk3pNRDAHf8wh/cKaElJzGrfSUtCTr..+ct8Auw9ZQmJ0+Dv
XHhV92QUxvAgenoTQn0PBz87AEMQ6pM6413yEv6Ab..rLurwA5E1JoZhZLt
a1/eZjUYAxDn07eabeiAvYwuwCqDQD1SQ6BIJ4taN..c8kfiaGpZCbWCic8
-----END RSA PRIVATE KEY-----

Note: Seven collumns have been removed and replaced with dots. This was done for
printing purposes, as the full text exceeds the page margins, when generating the DVI
document version. If you would like to see the private key, just pass to the next section.

Note: The careful reader will see that the encryption algorithm used is 3DES. 3DES is a
US standard (NIST FIPS 46-3). As a sidenote, 3DES is DES used 3 times in ENCRYPT,
DECRYPT and finally ENCRYPT mode (EDE). The DES component was used in Cipher
Block Chaining (CBC) mode, a common mode of encryption for block ciphers.

Sample Private Key in PEM format (2048 bits)
This is a sample private key in PEM format.

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEA3Tz2mr7SZiAMfQyuvBjM9Oi..Z1BjP5CE/Wm/Rr500P

57

Appendix B. Sample Documents

RK+Lh9x5eJPo5CAZ3/ANBE0sTK0ZsDGMak2m1g7..3VHqIxFTz0Ta1d+NAj
wnLe4nOb7/eEJbDPkk05ShhBrJGBKKxb8n104o/..PdzbFMIyNjJzBM2o5y
5A13wiLitEO7nco2WfyYkQzaxCw0AwzlkVHiIyC..71pSzkv6sv+4IDMbT/
XpCo8L6wTarzrywnQsh+etLD6FtTjYbbrvZ8RQM..Hg2qxraAV++HNBYmNW
s0duEdjUbJK+ZarypXI9TtnS4o1Ckj7POfljiQI..IBAFyidxtqRQyv5KrD
kbJ+q+rsJxQlaipn2M4lGuQJEfIxELFDyd3XpxP..Un/82NZNXlPmRIopXs
2T91jiLZEUKQw+n73j26adTbteuEaPGSrTZxBLR..yssO0wWomUyILqVeti
6AkL0NJAuKcucHGqWVgUIa4g1haE0ilcm6dWUDo..fd+PpzdCJf1s4NdUWK
YV2GJcutGQb+jqT5DTUqAgST7N8M28rwjK6nVMI..BUpP0xpPnuYDyPOw6x
4hBt8DZQYyduzIXBXRBKNiNdv8fum68/5klHxp6..4HRkMUL958UVeljUsT
BFQlO9UCgYEA/VqzXVzlz8K36VSTMPEhB5zBATV..PRiXtYK1YpYV4/jSUj
vvT4hP8uoYNC+BlEMi98LtnxZIh0V4rqHDsScAq..VyeSLH0loKMZgpwFEm
bEIDnEOD0nKrfT/9K9sPYgvB43wsLEtUujaYw3W..Liy0WKmB8CgYEA34xn
1QlOOhHBn9Z8qYjoDYhvcj+a89tD9eMPhesfQFw..rsfGcXIonFmWdVygbe
6Doihc+GIYIq/QP4jgMksE1ADvczJSke92ZfE2i..fitBpQERNJO0BlabfP
ALs5NssKNmLkWS2U2BHCbv4DzDXwiQB37KPOL1c..kBHfF2/htIs20d1UVL
+PK+aXKwguI6bxLGZ3of0UH+mGsSl0mkp7kYZCm..OTQtfeRqP8rDSC7DgA
kHc5ajYqh04AzNFaxjRo+M3IGICUaOdKnXd0Fda..QwfoaX4QlRTgLqb7AN
ZTzM9WbmnYoXrx17kZlT3lsCgYEAm757XI3WJVj..WoLj1+v48WyoxZpcai
uv9bT4Cj+lXRS+gdKHK+SH7J3x2CRHVS+WH/SVC..DxuybvebDoT0TkKiCj
BWQaGzCaJqZa+POHK0klvS+9ln0/6k539p95tfX..X4TCzbVG6+gJiX0ysz
Yfehn5MCgYEAkMiKuWHCsVyCab3RUf6XA9gd3qY..fCTIGtS1tR5PgFIV+G
engiVoWc/hkj8SBHZz1n1xLN7KDf8ySU06MDggB..hJ+gXJKy+gf3mF5Kmj
DtkpjGHQzPF6vOe907y5NQLvVFGXUq/FIJZxB8k..fJdHEm2M4=
-----END RSA PRIVATE KEY-----

Note: Seven collumns have been removed and replaced with the dots. This was done for
printing purposes, as the full text exceeds the page margins, when generating the DVI
document version. If you really would like to see the private key, just pass to the next
section.

Sample Private Key in TXT format (2048 bits)
This is a sample private key in TXT format.

Private-Key: (2048 bit)
modulus:

00:dd:3c:f6:9a:be:d2:66:20:0c:7d:0c:ae:bc:18:
cc:f4:e8:89:8d:16:b3:5c:16:75:06:33:f9:08:4f:
d6:9b:f4:6b:e7:4d:0f:44:af:8b:87:dc:79:78:93:
e8:e4:20:19:df:f0:0d:04:4d:2c:4c:ad:19:b0:31:
8c:6a:4d:a6:d6:0e:e8:ae:e2:37:75:8d:d5:1e:a2:
31:15:3c:f4:4d:ad:5d:f8:d0:23:c2:72:de:e2:73:
9b:ef:f7:84:25:b0:cf:92:4d:39:4a:18:41:ac:91:
81:28:ac:5b:f2:7d:74:e2:8f:f9:a7:c1:c0:b1:93:
dd:cd:b1:4c:23:23:63:27:30:4c:da:8e:72:e4:0d:
77:c2:22:e2:b4:43:bb:9d:ca:36:59:fc:98:91:0c:
da:c4:2c:34:03:0c:e5:91:51:e2:23:20:ae:68:5e:
30:8f:9e:f5:a5:2c:e4:bf:ab:2f:fb:82:03:31:b4:
ff:5e:90:a8:f0:be:b0:4d:aa:f3:af:2c:27:42:c8:
7e:7a:d2:c3:e8:5b:53:8d:86:db:ae:f6:7c:45:03:
35:b6:52:9d:a0:c1:e0:da:ac:6b:68:05:7e:f8:73:
41:62:63:56:b3:47:6e:11:d8:d4:6c:92:be:65:aa:
f2:a5:72:3d:4e:d9:d2:e2:8d:42:92:3e:cf:39:f9:
63:89

publicExponent: 65537 (0x10001)
privateExponent:

5c:a2:77:1b:6a:45:0c:af:e4:aa:c3:91:b2:7e:ab:

58

Appendix B. Sample Documents

ea:ec:27:14:25:6a:2a:67:d8:ce:25:1a:e4:09:11:
f2:31:10:b1:43:c9:dd:d7:a7:13:d7:14:21:91:c5:
15:27:ff:cd:8d:64:d5:e5:3e:64:48:a2:95:ec:d9:
3f:75:8e:22:d9:11:42:90:c3:e9:fb:de:3d:ba:69:
d4:db:b5:eb:84:68:f1:92:ad:36:71:04:b4:4a:f6:
03:2f:5f:6c:ac:b0:ed:30:5a:89:94:c8:82:ea:55:
eb:62:e8:09:0b:d0:d2:40:b8:a7:2e:70:71:aa:59:
58:14:21:ae:20:d6:16:84:d2:29:5c:9b:a7:56:50:
3a:10:0b:c6:70:2b:97:dd:f8:fa:73:74:22:5f:d6:
ce:0d:75:45:8a:61:5d:86:25:cb:ad:19:06:fe:8e:
a4:f9:0d:35:2a:02:04:93:ec:df:0c:db:ca:f0:8c:
ae:a7:54:c2:37:a1:11:7b:9f:40:54:a4:fd:31:a4:
f9:ee:60:3c:8f:3b:0e:b1:e2:10:6d:f0:36:50:63:
27:6e:cc:85:c1:5d:10:4a:36:23:5d:bf:c7:ee:9b:
af:3f:e6:49:47:c6:9e:b8:00:b0:d9:d2:de:07:46:
43:14:2f:de:7c:51:57:a5:8d:4b:13:04:54:25:3b:
d5

prime1:
00:fd:5a:b3:5d:5c:e5:cf:c2:b7:e9:54:93:30:f1:
21:07:9c:c1:01:35:64:7e:90:93:a7:13:d1:89:7b:
58:2b:56:29:61:5e:3f:8d:25:23:be:f4:f8:84:ff:
2e:a1:83:42:f8:19:44:32:2f:7c:2e:d9:f1:64:88:
74:57:8a:ea:1c:3b:12:70:0a:be:86:28:3b:4c:d5:
72:79:22:c7:d2:5a:0a:31:98:29:c0:51:26:6c:42:
03:9c:43:83:d2:72:ab:7d:3f:fd:2b:db:0f:62:0b:
c1:e3:7c:2c:2c:4b:54:ba:36:98:c3:75:b1:8f:69:
4b:5b:62:e2:cb:45:8a:98:1f

prime2:
00:df:8c:67:d5:09:4e:3a:11:c1:9f:d6:7c:a9:88:
e8:0d:88:6f:72:3f:9a:f3:db:43:f5:e3:0f:85:eb:
1f:40:5c:26:6f:31:49:82:4a:ec:7c:67:17:22:89:
c5:99:67:55:ca:06:de:e8:3a:22:85:cf:86:21:82:
2a:fd:03:f8:8e:03:24:b0:4d:40:0e:f7:33:25:29:
1e:f7:66:5f:13:68:b6:d2:5b:a8:54:17:e2:b4:1a:
50:11:13:49:3b:40:65:69:b7:cf:00:bb:39:36:cb:
0a:36:62:e4:59:2d:94:d8:11:c2:6e:fe:03:cc:35:
f0:89:00:77:ec:a3:ce:2f:57

exponent1:
00:c2:f9:01:1d:f1:76:fe:1b:48:b3:6d:1d:d5:45:
4b:f8:f2:be:69:72:b0:82:e2:3a:6f:12:c6:67:7a:
1f:d1:41:fe:98:6b:12:97:49:a4:a7:b9:18:64:29:
89:b6:4c:30:c6:83:93:42:d7:de:46:a3:fc:ac:34:
82:ec:38:00:90:77:39:6a:36:2a:87:4e:00:cc:d1:
5a:c6:34:68:f8:cd:c8:18:80:94:68:e7:4a:9d:77:
74:15:d6:b3:64:ca:50:85:14:30:7e:86:97:e1:09:
51:4e:02:ea:6f:b0:0d:65:3c:cc:f5:66:e6:9d:8a:
17:af:1d:7b:91:99:53:de:5b

exponent2:
00:9b:be:7b:5c:8d:d6:25:58:d7:98:1f:5b:cc:d5:
a8:2e:3d:7e:bf:8f:16:ca:8c:59:a5:c6:a2:ba:ff:
5b:4f:80:a3:fa:55:d1:4b:e8:1d:28:72:be:48:7e:
c9:df:1d:82:44:75:52:f9:61:ff:49:50:92:b7:67:
b3:c1:80:f1:bb:26:ef:79:b0:e8:4f:44:e4:2a:20:
a3:05:64:1a:1b:30:9a:26:a6:5a:f8:f3:87:2b:49:
25:bd:2f:bd:96:7d:3f:ea:4e:77:f6:9f:79:b5:f5:
f1:50:80:c7:6c:65:f8:4c:2c:db:54:6e:be:80:98:
97:d3:2b:33:61:f7:a1:9f:93

coefficient:
00:90:c8:8a:b9:61:c2:b1:5c:82:69:bd:d1:51:fe:
97:03:d8:1d:de:a6:23:be:61:0b:02:d7:c2:4c:81:
ad:4b:5b:51:e4:f8:05:21:5f:86:7a:78:22:56:85:
9c:fe:19:23:f1:20:47:67:3d:67:d7:12:cd:ec:a0:
df:f3:24:94:d3:a3:03:82:00:74:0b:68:1d:5b:88:
49:fa:05:c9:2b:2f:a0:7f:79:85:e4:a9:a3:0e:d9:
29:8c:61:d0:cc:f1:7a:bc:e7:bd:d3:bc:b9:35:02:
ef:54:51:97:52:af:c5:20:96:71:07:c9:17:00:6d:

59

Appendix B. Sample Documents

ab:7d:27:c9:74:71:26:d8:ce

Note: The numbers are in hexadecimal notation where each couple of digits represents
8 bits.

In decimal, the modulus n is:

27928727520532098560054510086934803266769027328779773633
51762493251995978285544035350906266382585272722398629867
67263282027760422651274751164233304322779357458680526177
93594651686619933029730312573799176384081348734718092523
53476550057243981913102899068449856388885987417785575633
66522578044678796800808595716146657069948593436088106761
86674067708949755093039975941211253008157978789036441127
01109572656021257137086334620169063315388954284609394192
32250643688514600699603929824545296848370051254650037973
10139479221307918200583851065828489354285517184240655579
54933738674003130224949637988279936009837240188474132980
1

If an adversary managed to factorise the modulus, she would come up with the fac-
tors p and q, where p is:

17791143933509595918127954499653383601218835098160342274
21719349464132778400846891474457120589082133325302604179
82181001327467441044697854896458761089076165690493808885
78606941384914032562858753139200694087767527290102835209
36343115102676302117059691295229400834867089684114302209
27632138221540171427701495839

and q is:

15698106667513592225651910118661853088086996081175911345
49581990193390503622003253143718326860723480921952218366
69795595987275285870475032000847646645415387334949112223
81409068648841957504994872889663428380162653646162371919
71899699949089072105502530930366392712822832371160724348
51400420434671809603239292759

The coefficient and the exponents 1 and 2 are used to increase the performance of
those operations of RSA that make use of the private key. That is, they are used by
the owner of the key and they are only visible to her.

Note: For information on software that works with natural numbers of arbitrary size, you
may find the GMP library1 quite useful.

60

Appendix B. Sample Documents

Sample CA Certificate in PEM format
This is a sample Certificate in PEM format.

-----BEGIN CERTIFICATE-----
MIIEczCCA1ugAwIBAgIBADANBgkqhkiG9w0BAQQFAD..AkGA1UEBhMCR0Ix
EzARBgNVBAgTClNvbWUtU3RhdGUxFDASBgNVBAoTC0..0EgTHRkMTcwNQYD
VQQLEy5DbGFzcyAxIFB1YmxpYyBQcmltYXJ5IENlcn..XRpb24gQXV0aG9y
aXR5MRQwEgYDVQQDEwtCZXN0IENBIEx0ZDAeFw0wMD..TUwMTZaFw0wMTAy
MDQxOTUwMTZaMIGHMQswCQYDVQQGEwJHQjETMBEGA1..29tZS1TdGF0ZTEU
MBIGA1UEChMLQmVzdCBDQSBMdGQxNzA1BgNVBAsTLk..DEgUHVibGljIFBy
aW1hcnkgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxFD..AMTC0Jlc3QgQ0Eg
THRkMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCg..Tz2mr7SZiAMfQyu
vBjM9OiJjRazXBZ1BjP5CE/Wm/Rr500PRK+Lh9x5eJ../ANBE0sTK0ZsDGM
ak2m1g7oruI3dY3VHqIxFTz0Ta1d+NAjwnLe4nOb7/..k05ShhBrJGBKKxb
8n104o/5p8HAsZPdzbFMIyNjJzBM2o5y5A13wiLitE..fyYkQzaxCw0Awzl
kVHiIyCuaF4wj571pSzkv6sv+4IDMbT/XpCo8L6wTa..sh+etLD6FtTjYbb
rvZ8RQM1tlKdoMHg2qxraAV++HNBYmNWs0duEdjUbJ..XI9TtnS4o1Ckj7P
OfljiQIDAQABo4HnMIHkMB0GA1UdDgQWBBQ8urMCRL..5AkIp9NJHJw5TCB
tAYDVR0jBIGsMIGpgBQ8urMCRLYYMHUKU5AkIp9NJH..aSBijCBhzELMAkG
A1UEBhMCR0IxEzARBgNVBAgTClNvbWUtU3RhdGUxFD..AoTC0Jlc3QgQ0Eg
THRkMTcwNQYDVQQLEy5DbGFzcyAxIFB1YmxpYyBQcm..ENlcnRpZmljYXRp
b24gQXV0aG9yaXR5MRQwEgYDVQQDEwtCZXN0IENBIE..DAMBgNVHRMEBTAD
AQH/MA0GCSqGSIb3DQEBBAUAA4IBAQC1uYBcsSncwA..DCsQer772C2ucpX
xQUE/C0pWWm6gDkwd5D0DSMDJRqV/weoZ4wC6B73f5..bLhGYHaXJeSD6Kr
XcoOwLdSaGmJYslLKZB3ZIDEp0wYTGhgteb6JFiTtn..sf2xdrYfPCiIB7g
BMAV7Gzdc4VspS6ljrAhbiiawdBiQlQmsBeFz9JkF4..b3l8BoGN+qMa56Y
It8una2gY4l2O//on88r5IWJlm1L0oA8e4fR2yrBHX..adsGeFKkyNrwGi/
7vQMfXdGsRrXNGRGnX+vWDZ3/zWI0joDtCkNnqEpVn..HoX
-----END CERTIFICATE-----

Note: This is the CA Certificate, also called the Root CA Certificate. The goal is to make
the CA Certificate available to the bigger possible audience. Also, we would ask compa-
nies that make WWW browsers to include it in their list of Root CA Certificates.

Sample CA Certificate in TXT format
This is a sample Certificate in TXT format.

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=GB, ST=Surrey, O=Best CA Ltd,

OU=Class 1 Public Primary Certification Authority,
CN=Best CA Ltd

Validity
Not Before: Feb 5 19:50:16 2000 GMT
Not After : Feb 4 19:50:16 2001 GMT

Subject: C=GB, ST=Surrey, O=Best CA Ltd,
OU=Class 1 Public Primary Certification Authority,
CN=Best CA Ltd

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:dd:3c:f6:9a:be:d2:66:20:0c:7d:0c:ae:bc:18:

61

Appendix B. Sample Documents

cc:f4:e8:89:8d:16:b3:5c:16:75:06:33:f9:08:4f:
d6:9b:f4:6b:e7:4d:0f:44:af:8b:87:dc:79:78:93:
e8:e4:20:19:df:f0:0d:04:4d:2c:4c:ad:19:b0:31:
8c:6a:4d:a6:d6:0e:e8:ae:e2:37:75:8d:d5:1e:a2:
31:15:3c:f4:4d:ad:5d:f8:d0:23:c2:72:de:e2:73:
9b:ef:f7:84:25:b0:cf:92:4d:39:4a:18:41:ac:91:
81:28:ac:5b:f2:7d:74:e2:8f:f9:a7:c1:c0:b1:93:
dd:cd:b1:4c:23:23:63:27:30:4c:da:8e:72:e4:0d:
77:c2:22:e2:b4:43:bb:9d:ca:36:59:fc:98:91:0c:
da:c4:2c:34:03:0c:e5:91:51:e2:23:20:ae:68:5e:
30:8f:9e:f5:a5:2c:e4:bf:ab:2f:fb:82:03:31:b4:
ff:5e:90:a8:f0:be:b0:4d:aa:f3:af:2c:27:42:c8:
7e:7a:d2:c3:e8:5b:53:8d:86:db:ae:f6:7c:45:03:
35:b6:52:9d:a0:c1:e0:da:ac:6b:68:05:7e:f8:73:
41:62:63:56:b3:47:6e:11:d8:d4:6c:92:be:65:aa:
f2:a5:72:3d:4e:d9:d2:e2:8d:42:92:3e:cf:39:f9:
63:89
Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Subject Key Identifier:

3C:BA:B3:02:44:B6:18:30:75:0A:53:90:24:22:\
9F:4D:24:72:70:E5

X509v3 Authority Key Identifier:
keyid:3C:BA:B3:02:44:B6:18:30:75:0A:53:90:\
24:22:9F:4D:24:72:70:E5

DirName:/C=GB/ST=Some-State/O=Best CA Ltd/\
OU=Class 1 Public Primary Certification
Authority/CN=Best CA Ltd

serial:00

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: md5WithRSAEncryption
b5:b9:80:5c:b1:29:dc:c0:03:db:28:c8:a3:08:30:ac:41:ea:
fb:ef:60:b6:b9:ca:57:c5:05:04:fc:2d:29:59:69:ba:80:39:
30:77:90:f4:0d:23:03:25:1a:95:ff:07:a8:67:8c:02:e8:1e:
f7:7f:96:06:3e:7e:90:99:b2:e1:19:81:da:5c:97:92:0f:a2:
ab:5d:ca:0e:c0:b7:52:68:69:89:62:c9:4b:29:90:77:64:80:
c4:a7:4c:18:4c:68:60:b5:e6:fa:24:58:93:b6:72:ef:5c:9b:
a0:3a:c7:f6:c5:da:d8:7c:f0:a2:20:1e:e0:04:c0:15:ec:6c:
dd:73:85:6c:a5:2e:a5:8e:b0:21:6e:28:9a:c1:d0:62:42:54:
26:b0:17:85:cf:d2:64:17:89:c3:99:94:cf:0d:bd:e5:f0:1a:
06:37:ea:8c:6b:9e:98:22:df:2e:9d:ad:a0:63:89:76:3b:ff:
e8:9f:cf:2b:e4:85:89:96:6d:4b:d2:80:3c:7b:87:d1:db:2a:
c1:1d:71:7a:d1:fe:36:59:a7:6c:19:e1:4a:93:23:6b:c0:68:
bf:ee:f4:0c:7d:77:46:b1:1a:d7:34:64:46:9d:7f:af:58:36:
77:ff:35:88:d2:3a:03:b4:29:0d:9e:a1:29:56:78:60:fe:00:
15:98:7a:17

Note: This is the CA Certificate, also called the Root CA Certificate. It is in TXT format
which is another way to say that it is in a human–readable format.

Note: Notice the modulus. It has 2048 bits and it is the product of two big primes. Each
prime has about 1024 bits. The security of the certificate relies on the difficulty to factorise
this 2048–bits long (or over 600 decimal digits long) number. Since we generated this
key–pair, we already know these two primes. All the mentioned values, in decimal, are in
the Section called Sample Private Key in TXT format (2048 bits).

62

Appendix B. Sample Documents

Note: We have chosen RSA for the public key algorithm. We could have chosen one of
the alternatives, like El Gamal or elliptic curves.

Sample certificate request in PEM format
This is a sample certificate request in PEM format.

-----BEGIN CERTIFICATE REQUEST-----
MIIC5DCCAcwCAQAwgZ4xCzAJBgNVBAYTAkdCMQ8wDQ..wZTdXJyZXkxDjAM
BgNVBAcTBUVnaGFtMRowGAYDVQQKExFBcnRzIEJ1aW..Ex0ZDEWMBQGA1UE
CxMNRGVwdC4gSGlzdG9yeTEZMBcGA1UEAxMQU2ltb3..XRlbGxpczEfMB0G
CSqGSIb3DQEJARYQc2ltb3NAb3BlbmNhLm9yZzCCAS..oZIhvcNAQEBBQAD
ggEPADCCAQoCggEBAN089pq+0mYgDH0MrrwYzPToiY..QYz+QhP1pv0a+dN
D0Svi4fceXiT6OQgGd/wDQRNLEytGbAxjGpNptYO6K..R6iMRU89E2tXfjQ
I8Jy3uJzm+/3hCWwz5JNOUoYQayRgSisW/J9dOKP+a..c2xTCMjYycwTNqO
cuQNd8Ii4rRDu53KNln8mJEM2sQsNAMM5ZFR4iMgrm..aUs5L+rL/uCAzG0
/16QqPC+sE2q868sJ0LIfnrSw+hbU42G2672fEUDNb..Nqsa2gFfvhzQWJj
VrNHbhHY1GySvmWq8qVyPU7Z0uKNQpI+zzn5Y4kCAw..A0GCSqGSIb3DQEB
BAUAA4IBAQC2y+cj6EmXzHunozGDv3fu9rw+T7SLrh..tY0K4L5w/4jOXRS
Q5VHn8o2M1E8JE2iK9tg24Nkh9GvkODxbP2ABYKslT..pZ8KC+wHCDZyXCY
Fgrass8oENyZG2VFFlfgbtRUssdKldJcJKpgnsHyt1..xJ11Y0t0n9ruayu
Oqp9lTEu6e+Lhhcuad4JncXiSR0EdG75AqN9bbI8NG..tgzzOrvfYNtGe9t
EI/wriWPQvl4QLJ5VevzuIC62dQztVQmDR2hPd2J8/..1ArMX5olNCef2XB
Rghkcki7R/ZpuuwaXkT+qDu+eoDwju0P
-----END CERTIFICATE REQUEST-----

Note: This is the certificate request that a Certification Authority needs to sign. Typical
CAs could be Verisign, Thawte and of course OpenCA.

Sample certificate request in TXT format
This is a sample certificate request in TXT format.

Certificate Request:
Data:

Version: 0 (0x0)
Subject: C=GB, ST=Surrey, L=Egham,

O=Arts Building Ltd,
OU=Dept. History,
CN=Simos Xenitellis/Email=simos@openca.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)
Modulus (2048 bit):

00:dd:3c:f6:9a:be:d2:66:20:0c:7d:0c:ae:bc:18:
cc:f4:e8:89:8d:16:b3:5c:16:75:06:33:f9:08:4f:
d6:9b:f4:6b:e7:4d:0f:44:af:8b:87:dc:79:78:93:
e8:e4:20:19:df:f0:0d:04:4d:2c:4c:ad:19:b0:31:
8c:6a:4d:a6:d6:0e:e8:ae:e2:37:75:8d:d5:1e:a2:
31:15:3c:f4:4d:ad:5d:f8:d0:23:c2:72:de:e2:73:
9b:ef:f7:84:25:b0:cf:92:4d:39:4a:18:41:ac:91:
81:28:ac:5b:f2:7d:74:e2:8f:f9:a7:c1:c0:b1:93:
dd:cd:b1:4c:23:23:63:27:30:4c:da:8e:72:e4:0d:
77:c2:22:e2:b4:43:bb:9d:ca:36:59:fc:98:91:0c:

63

Appendix B. Sample Documents

da:c4:2c:34:03:0c:e5:91:51:e2:23:20:ae:68:5e:
30:8f:9e:f5:a5:2c:e4:bf:ab:2f:fb:82:03:31:b4:
ff:5e:90:a8:f0:be:b0:4d:aa:f3:af:2c:27:42:c8:
7e:7a:d2:c3:e8:5b:53:8d:86:db:ae:f6:7c:45:03:
35:b6:52:9d:a0:c1:e0:da:ac:6b:68:05:7e:f8:73:
41:62:63:56:b3:47:6e:11:d8:d4:6c:92:be:65:aa:
f2:a5:72:3d:4e:d9:d2:e2:8d:42:92:3e:cf:39:f9:
63:89
Exponent: 65537 (0x10001)

Attributes:
a0:00

Signature Algorithm: md5WithRSAEncryption
b6:cb:e7:23:e8:49:97:cc:7b:a7:a3:31:83:bf:77:ee:f6:bc:
3e:4f:b4:8b:ae:1b:ed:e2:82:89:2a:d6:34:2b:82:f9:c3:fe:
23:39:74:52:43:95:47:9f:ca:36:33:51:3c:24:4d:a2:2b:db:
60:db:83:64:87:d1:af:90:e0:f1:6c:fd:80:05:82:ac:95:3c:
4f:a0:3d:f1:96:96:7c:28:2f:b0:1c:20:d9:c9:70:98:16:0a:
da:b2:cf:28:10:dc:99:1b:65:45:16:57:e0:6e:d4:54:b2:c7:
4a:95:d2:5c:24:aa:60:9e:c1:f2:b7:5e:a7:24:fe:6f:6f:12:
75:d5:8d:2d:d2:7f:6b:b9:ac:ae:3a:aa:7d:95:31:2e:e9:ef:
8b:86:17:2e:69:de:09:9d:c5:e2:49:1d:04:74:6e:f9:02:a3:
7d:6d:b2:3c:34:64:8f:ec:33:e3:56:d8:33:cc:ea:ef:7d:83:
6d:19:ef:6d:10:8f:f0:ae:25:8f:42:f9:78:40:b2:79:55:eb:
f3:b8:80:ba:d9:d4:33:b5:54:26:0d:1d:a1:3d:dd:89:f3:fb:
bf:f0:c7:4a:73:50:2b:31:7e:68:94:d0:9e:7f:65:c1:46:08:
64:72:48:bb:47:f6:69:ba:ec:1a:5e:44:fe:a8:3b:be:7a:80:
f0:8e:ed:0f

Note: This is the expanded version of the certificate request from
the Section called Sample certificate request in PEM format. You can notice the user
information and the n, e from RSA.

Notes
1. http://www.swox.com/gmp/

64

Appendix C. Description of Public Key Algorithms

How does RSA work?
We show a high–level though working description of RSA. Then, we give an example
with easy to work with numbers.

Description
To initialise RSA, follow the steps

1. Pick two large primes, p and q.
2. Find N = p * q. N is the RSA modulus.
3. Let e be a number relatively prime to (p-1)*(q-1).
4. Find d, so that d*e = 1 mod (p-1)*(q-1) .
5. The set (e, N) is the public key. Make it known to every one.

The set (d, N) is the private key. Keep it private and safe.

To encrypt a message m,

1. Make sure m < N, otherwise chop m in suitably small pieces and perform RSA
on each individual piece.

2. Compute c = m ^ e mod N

3. c is the encrypted message

To decrypt a ciphertext c,

1. Compute m = c ^ d mod N

2. m is the original message

To sign message m,

1. Compute s = m ^ d mod N

2. s is the digital signature. Send along with message m.

To verify signed message s,

1. Compute m = s ^ e mod N

2. Check if m from above calculation is the same with message sent.

65

Appendix C. Public Key Algorithms

Practical example
TODO

How does El Gamal work?
TODO

Description
TODO

Example
TODO

66

Appendix D. OpenCA Installation details
As described in Figure 7-1, OpenCA requires three distinctive servers. However, this
makes the software less accesible. We describe how to install all the components on a
single computer.
We assume the character of Woody Allen in the movie "Bananas", where, while he
was on trial in the court, he was playing both the role of the defendant and the laywer
by switching places quickly.
First, we determine the software components to install and the server on which we
install them.

Table D-1. Software installation matrix

Software CAServer RAServer RAOperator
Perl Generic
modules

3 3 3

OpenCA Perl
modules

3 3 •

WWW Server 3 3 3

SSL/TSL module 3 3 3

LDAP Server • • 3

OpenSSL • • •

Note: The above table is not yet final and is subject to changes as the project evolves.

Using the above table, you may proceed with the installation, as described in the
following chapters. Keep in mind that if you are doing an all–in–one installation ––
all servers on a single workstation –– then you do not need to install the same soft-
ware component multiple times or in different directories. We will note any special
configuration setting to be made in regard to this issue.

Software installation sequence
It is recommended that the software components be installed in this sequence:

Installation of Perl modules
Information about how to find the latest version of a Perl module can be found at
Appendix A.

Note: These Perl modules must be installed in the sequence shown because of depen-
dencies. However, if you make a mistake in the sequence, you receive an informative
error that indicates the module was skipped.

1. Convert::BER is a perl object class implementation to encode and decode ob-
jects as described by ITU-T standard X.209 (ASN.1) using Basic Encoding Rules
(BER). The filename is Convert-BER-1.26.tar.gz1

67

Appendix D. OpenCA Installation details

2. MIME::Base64 and MIME::QuotedPrint provide a base64 encoder/decoder
and a quoted-printable encoder/decoder. These encoding methods are
specified in RFC 2045 – MIME (Multipurpose Internet Mail Extensions). The
filename is MIME-Base64-2.11.tar.gz2

3. The URI perl object class provides functionality regarding the Uniform Resource
Identifier, as specified in RFC 2396. The filename is URI-1.04.tar.gz3

4. The Digest::* perl object class provides implementations for the MD5 (RFC
1321), MD2 (RFC 1319) and SHA-1 (FIPS PUB 180-1) hash functions. Also, an
implementation of the HMAC (RFC 2104) MAC function is provided. The file-
name is Digest-MD5-2.09.tar.gz4

5. perl-ldap provides access to LDAP servers. A requirement to install it is
to already have Convert::BER installed on your system. The filename is
perl-ldap-0.13.tar.gz5

6. I have the idea that this and the above have overlapping functionality. The file-
name is Net-LDAPapi-1.42.tar.gz6

Installation of OpenCA–specific modules
The OpenCA–specific modules can be found at either at CPAN or at the OpenCA
WWW site.
The functionality of these perl modules is not entirely OpenCA–specific. In general,
they help to parse configuration files.

1. This perl module is used in order to access the configuration files of OpenCA.
Currently, the configuration files are

• ca.conf

• raserver.conf

• secure.cnf

The filename is OpenCA-Configuration-1.2.tar.gz7

2. This perl module provides access to configuration variables that can have three
states. It is used to ease the access to the OpenCA configuration files. The file-
name is OpenCA-TRIStateCGI-1.02.tar.gz8

Installation of OpenCA
This is described in three major sections, the installation of the CAServer, the
RAServer and the RAOperator(s).
The installation procedure involves setting up the configuration files, copying the
HTML pages to the appropriate directories and finally adding the CGI scripts in the
corresponding directories.

CAServer Installation
This is the installation of the Certification Authority. Please refer to Figure 7-1 for
more information.
It is assumed that you have uncompressed and untarred the OpenCA software with
the following command.

68

Appendix D. OpenCA Installation details

root# tar xvfz OpenCA-0.2.0.tar.gz

To install the software, enter the directory created (OpenCA-0.2.0) and type

root# make install-ca

Use the following parameters when installing the OpenCA component for the
CAServer.

Table D-2. CAServer installation parameters

Parameter Value
OpenSSL installation directory /usr/local/ssl

Base directory for CAServer /usr/local/RAServer

Webserver user nobody.nobody
Use found OpenSSL command Y
Continue installation yes
Edit openssl.cnf Check

the Section called openssl.cnf configuration for OpenCA

Subsequently, to install the WWW pages that accompany the CAServer do

root# make install-ca-web

Use the following parameters when installing the WWW pages of the OpenCA com-
ponent for the CAServer.

Table D-3. RAServer WWW Server installation parameters

Parameter Value
HTML pages directory /usr/local/apache/htdocs/ca

CGI directory /usr/local/apache/cgi-bin

Continue installation yes

Finally, follow the instructions from the WWW pages to initialise the CAServer by
creating the CA private key and certificate.

RAServer Installation
This is the installation of the Registration Authority. Please refer to Figure 7-1 for
more information.

Note: The RAServer is supposed to be installed on a separate system than the CAServer.
Furthermore, it is assumed that the steps that led to the installation of the CAServer will

69

Appendix D. OpenCA Installation details

have to be duplicated to create the RAServer. However, for limited testing purposes, all of
them could be installed on the same system.

It is assumed that you have uncompressed and untarred the OpenCA software with
the following commands.

root# tar xvfz OpenCA-0.2.0.tar.gz

To install the RAServer software, enter the directory created (OpenCA-0.2.0) and
type

root# make install-raserver
root# make install-raserver-web

You can use the following parameters when installing the OpenCA component for
the RAServer.

Table D-4. RAServer installation parameters

Parameter Value
OpenSSL installation directory /usr/local/ssl

Base directory for RAServer /usr/local/RAServer

Webserver user nobody.nobody
Use found OpenSSL command Y
Continue installation yes

Table D-5. RAServer WWW Server installation parameters

Parameter Value
HTML pages directory /usr/local/apache/htdocs/ra

CGI directory /usr/local/apache/cgi-bin

Continue installation yes

RAOperator Installation
This is the installation of the RA Operator. Please refer to Figure 7-1 for more infor-
mation.
It is assumed that you have uncompressed and untarred the OpenCA software with
the following commands.

root# tar xvfz OpenCA-0.2.0.tar.gz

To install the software, enter the directory created (OpenCA-0.2.0) and type
70

Appendix D. OpenCA Installation details

root# make install-secure

Note: Again, the RAOperator is supposed to be installed on a separate system other
than the CAServer and the RAServer. Furthermore, it is assumed that the steps that led
to the installation of the CAServer and the RAServer will have to be duplicated to create
the RAOperator. However, for limited testing purposes, both of them could be installed
on the same system. We must say that installing the CAServer, the RAServer and the
RAOperators on the same system, will make it rather difficult to use and probably error-
prone in the testing.

Table D-6. RAOperator WWW Server installation parameters

Parameter Value
HTML pages directory /usr/local/apache/htdocs/rao

CGI directory /usr/local/apache/cgi-bin

Continue installation yes

WWW Server installation
Installation of the WWW server and the SSL/TLS WWW Server component. This
will be a rather lengthly procedure, unless you use RPM files. This software can be
found at the Section called Software packages in Chapter 7. Support information is at
Chapter 8.

LDAP installation
An independent step is the installation of the LDAP software. This is
usually installed on RAOperator. Recommended LDAP software is at
the Section called Software packages in Chapter 7. For support information, please see
Chapter 8.

openssl.cnf configuration for OpenCA
These are configuration instructions for the openssl.cnf of the CAServer.
We describe the values in this file that require modification. Most of the default values
remain the same.

• In the [CA_default] section, the value of dir should be changed to the directory
that has the Certification Authority installed. Typically, it is /usr/local/OpenCA.

• In the [req] section, you should modify all the variables that their name ends
with _default . The default values of these variables serve as an example. These are:

71

Appendix D. OpenCA Installation details

Table D-7. openssl.cnf default values

Variable Sample value
organizationalUnitName_default OpenCA User
0.organizationName_default OpenCA
countryName_default GB
stateOrProvinceName_default Surrey
1.organizationName_default Arts Buildings Ltd

Note: The essence of the default values is that when you create new users, you are
prompted with these values. If this value applies to the user, you can accept it without
having to retype it.

Note: For the country name, you need to specify the ISO 3166 country code9. There
are two- and three-letter country codes. The current configuration supports two-letter
codes.

Note: Notice that in some cases, the ISO 3166 is not the same with the Internet country
domain name. For example, for the United Kingdom, the ISO 3166 country code is GB.

• In the [user_cert] section, you may need to modify the nsCertType variable.
With this variable, you specify the capabilities of the certificate. This area will be
tackled in future versions of this document.

• In the [user_cert] section, you can set the comment that appears in the Certifi-
cate Signers’ Certificate window. The variable is nsComment and you should pro-
vide a suitable description for the certificate.

• In the [user_cert] section, you can specify the revocation URLs for both the
Root CA Certificate and the other certificates.

Note: In the same group of variables, care should be taken with the nsSslServerName
variable as it crashes certain versions of the Netscape® WWW browser, if it is set.

Notes
1. http://www.perl.com/CPAN-local/authors/id/GBARR/Convert-BER-

1.26.tar.gz
2. http://www.perl.com/CPAN-local/authors/id/GAAS/MIME-Base64-

2.11.tar.gz
3. http://www.perl.com/CPAN-local/authors/id/GAAS/URI-1.04.tar.gz
4. http://www.perl.com/CPAN-local/authors/id/GAAS/Digest-MD5-2.09.tar.gz
5. http://www.perl.com/CPAN-local/authors/id/GBARR/perl-ldap-0.13.tar.gz

72

Appendix D. OpenCA Installation details

6. http://www.perl.com/CPAN-local/authors/id/CDONLEY/Net-LDAPapi-
1.42.tar.gz

7. http://www.perl.com/CPAN-local/authors/id/M/MA/MADWOLF/OpenCA-
Configuration-1.2.tar.gz

8. http://www.perl.com/CPAN-local/authors/id/M/MA/MADWOLF/OpenCA-
TRIStateCGI-1.02.tar.gz

9. ftp://ftp.ripe.net/iso3166-countrycodes

73

Appendix D. OpenCA Installation details

74

Appendix E. License
This documentation is released under the following license.

GNU Free Documentation License
Version 1.1, March 2000
© 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE
The purpose of this License is to make a manual, textbook, or other written docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made
by others.
This License is a kind of "copyleft", which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
"Document", below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as "you".
A "Modified Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (For example, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political po-
sition regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

75

Appendix E. License

A "Transparent" copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human mod-
ification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the

76

Appendix E. License

latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version un-
der precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever pos-
sesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives permis-
sion.

2. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has less than five).

3. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

8. Include an unaltered copy of this License.
9. Preserve the section entitled "History", and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

11. In any section entitled "Acknowledgements" or "Dedications", preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

77

Appendix E. License

12. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

13. Delete any section entitled "Endorsements". Such a section may not be included
in the Modified Version.

14. Do not retitle any existing section as "Endorsements" or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.
The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.
In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitled "History"; likewise combine any
sections entitled "Acknowledgements", and any sections entitled "Dedications". You
must delete all sections entitled "Endorsements."

COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you

78

Appendix E. License

follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying
of that document.

AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document. If the Cover Text requirement
of section 3 is applicable to these copies of the Document, then if the Document is
less than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/. Each version of the License is given a distin-
guishing version number. If the Document specifies that a particular numbered ver-
sion of this License "or any later version" applies to it, you have the option of follow-
ing the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Docu-
ment does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

79

Appendix E. License

80

Colophon
This document was written in DocBook, an SGML DTD. In order to produce HTML,
DVI, PostScript® and other file formats, we used the DSSSL engine jade by James
Clark. More information about all these can be found at the The DocBook DTD1

WWW pages. The DSSSL stylesheets were provided by Normal Walsh2. A useful
book about DocBook can be found at [WalshMuellner99].
The JadeTeX macros3 were used for the DVI, PS and PDF output. JadeTeX is under
development and specific mistakes in the rendering of this document are due to bugs
(most commonly with regards with tables). It is expected to be fixed soon. The author
of JadeTeX is Sebastian Rantz.
The figures were created with xfig. More information can be found at the XFIG
Drawing Program for X Window System4.
The text editor used was vim by Bram Moolenaar. More information can be found at
the VIM (Vi IMproved) Home Page.5

This document was produced on a workstation running the Linux® Operating Sys-
tem.
The author of this document is Symeon (Simos) Xenitellis and he can be reached at
this e–mail6.

Notes
1. http://www.oasis-open.org/docbook/
2. http://www.nwalsh.com
3. http://www.tug.org/applications/jadetex/
4. http://www.xfig.org
5. http://www.vim.org
6. mailto:S.Xenitellis@rhbnc.ac.uk

81

82

Glossary
CAServer (OpenCA terminology)

The Certification Authority. In this document it is used to describe the CA as
described in Figure 7-1

RAServer (OpenCA terminology)

The Registration Authority. In this document it is used to describe the RA as
described in Figure 7-1

RAOperator (OpenCA terminology)

The front–end of the Registration Authority that interacts with the users. In this
document its functionality is described at Figure 7-1

Entity authentication mechanisms

Entity authentication mechanisms allow the verification, of an entity’s claimed
identity, by another entity. The authenticity of the entity can be ascertained only
for the instance of the authentication exchange.

Peer entity authentication

Peer entity authentication is the corroboration that a peer entity in an association
is the one claimed. This service is provided for use at the establishment of, or at
times during, the data transfer phase of a connection to confirm the identities of
one or more of the entities connected to one or more of the other entities.

Algorithm

An unambiguous formula or set of rules for solving a problem in a finite number
of steps. Algorithms for encryption are usually called Ciphers.

Certification Authority (CA)

An entity that attests to the identity of a person or an organisation. A Certificate
Authority might be an external company such as VeriSign that offers certificate
services or they might be an internal organisation such as a corporate MIS de-
partment. The Certificate Authority’s chief function is to verify the identity of
entities and issue digital certificates attesting to that identity.
The acronym CA can be found in different variations.

• Certification Authority (Used in this document and found in most documents)
• Certifying Authority (Found in the RSA Security Crypto FAQ1)
• Certificate Authority (Found in various documents)

83

Glossary

Certificate Request

An unsigned certificate for submission to a Certification Authority, which signs
it with the Private Key. Once the certificate request gets signed, it becomes a
Certificate. This term is used in PKIX terminology and it is the same with the
Certificate Signing Request. We use both terms to describe the same thing.

Certificate Signing Request (CSR) (OpenCA terminology)

An unsigned certificate for submission to a Certification Authority, which signs
it with the Private Key of their CA Certificate. Once the CSR is signed, it becomes
a real certificate.

Cipher

An algorithm or system for data encryption. Examples are DES, IDEA, RC4, etc.

Ciphertext

The result of the encryption of ciphertext, using a cipher.

Configuration Directive

A configuration command that controls one or more aspects of a program’s be-
havior. In Apache context these are all the command names in the first column
of the configuration files.

Cross–certificate

A cross–certificate is a certificate issued by one CA to another CA which contains
a CA signature key used for issuing certificates.

DER format

A binary format to encode certificates.

Digital Signature

A method of signing electronic documents (otherwise digital data) using Public
Key Cryptography.

Digital Timestamp

An electronic record that mathematically links a document to a time and date.

Electronic Commerce

The exchange of goods, services and fiduciary information or instruments via
distributed computer and communication networks.

84

Glossary

Export–Crippled

Diminished in cryptographic strength (and security) in order to comply with the
United States’ Export Administration Regulations (EAR). Export–crippled cryp-
tographic software is limited to a small key size, resulting in Ciphertext which
usually can be decrypted by brute force.
Currently there is draft policy in the United States that provides substantial free-
dom to the availability of cryptographic software. This policy remains to be fi-
nalised and voted in order to become effective. Similar legislation is expected to
be voted in the European Parliament soon.

Fully–Qualified Domain–Name (FQDN)

The unique name of a network entity, consisting of a hostname and a domain
name that can resolve to an IP address. For example, www is a hostname, what-
ever.com is a domain name, and www.whatever.com is a fully–qualified domain
name.

HyperText Transfer Protocol (HTTP)

The HyperText Transport Protocol is the standard transmission protocol used on
the World Wide Web.

HTTPS

The HyperText Transport Protocol (Secure), the standard encrypted communi-
cation mechanism on the World Wide Web. This is actually just HTTP over SSL.

Keyholder

The entity (often a person) that controls a private key.

Key recovery

The ability of an individual, organisation or their authorised agents to obtain an
extra copy of a key (or other information necessary for decryption) that enables
them to decrypt the ciphertext.

Lightweight Directory Access Protocol (LDAP)

LDAP is a specification for a client–server protocol to retrieve and manage di-
rectory information.

Message Digest

A hash of a message, which can be used to verify that the contents of the message
have not been altered in transit.

85

Glossary

OpenLDAP

OpenLDAP is an open–source implementation of LDAP. It provides a
stand–alone LDAP server, a stand–alone LDAP replication server, libraries
implementing the LDAP protocol, and other relevant software. For more
information on OpenLDAP, see http://www.openldap.org/.

OpenSSL

An open–source implementation of the SSL/TLS protocol. It is based on SSLeay.
For more about OpenSSL, see http://www.openssl.org/2.

Pass Phrase

The word or phrase that protects private key files. It prevents unauthorized users
from encrypting them.

PEM format

A text (ASCII) format that can be used to encode Certificates. It is essentially the
Certificate in DER format that has been encoded with Base64 and had a header
and footer added.

Plaintext

The text that will be encrypted. If we decrypt succesfully a ciphertext, the result
is the plaintext.

Private Key

The secret key in a Public Key Cryptography system, used to decrypt incoming
messages and sign outgoing ones.

Public Key

The publically available key in a Public Key Cryptography system, used to en-
crypt messages bound for its owner and to verify signatures made by its owner.

Public Key Cryptography

The study and application of asymmetric encryption systems, which use one
key for encryption and another for decryption. A corresponding pair of such
keys constitutes a key pair. Also called Asymmetric Cryptography.

Public Key Cryptography Standards PKCS

A series of cryptographic standards dealing with public-key issues, published
by RSA Laboratories.

86

Glossary

S–expressions

Data structures that are suitable for representing arbitrary complex data struc-
tures.

Secure Sockets Layer (SSL)

A protocol created by Netscape Communications Corporation for general
communication authentication and encryption over TCP/IP networks. The
most popular usage is HTTPS, i.e. the HyperText Transfer Protocol (HTTP) over
SSL.

Single Sign–On (SSO)

The ability to authenticate once and use several security services based on that
authentication.

SSLeay

The original SSL/TLS implementation library developed by Eric A. Young3; see
http://www.ssleay.org/. Now it has been renamed to OpenSSL; see OpenSSL.

Symmetric Cryptography

The study and application of Ciphers that use a single secret key for both en-
cryption and decryption operations.

Transport Layer Security (TLS)

The successor protocol to SSL, created by the Internet Engineering Task Force
(IETF) for general communication authentication and encryption over TCP/IP
networks. The current version, TLS version 1, is nearly identical with SSL version
3.

Trusted Third Party (TTP)

Another description for the Certification Authority that stresses that the keeper
of the CA private key should be an organisation or an entity that has no interests
or ties of any kind with the clients.

Uniform Resource Locator (URL)

The formal identifier to locate various resources on the World Wide Web. The
most popular URL scheme is http. SSL uses the scheme HTTPS.

X.500

A CCITT specification for directory services.

87

Glossary

X.509

An authentication certificate scheme recommended by the International
Telecommunication Union (ITU–T) which is used for SSL/TLS authentication.

Attribute Authority (AA)

An authority trusted by one or more users to create and sign attribute certificates.
It is important to note that the Attribute Authority is responsible for the attribute
certificates during their whole lifetime, not just for issuing them.

Attribute Certificate (AC)

A data structure containing a set of attributes for an end-entity and some other
information, which is digitally signed with the private key of the AA which is-
sued it.

Certificate

Can refer to either an Attribute Certificate or a Public Key Certificate certificate.
Where there is no distinction made the context should be assumed to apply to
both an AC and a public key certificate.

Certification Authority (CA)

An authority trusted by one or more users to create and assign public key cer-
tificates. Optionally the Certification Authority may create the user’s keys. It is
important to note that the Certification Authority is responsible for the public
key certificates during their whole lifetime, not just for issuing them.

Certificate Policy (CP)

A named set of rules that indicates the applicability of a public key certificate
to a particular community or class of application with common security require-
ments. For example, a particular certificate policy might indicate applicability
of a type of public key certificate to the authentication of electronic data inter-
change transactions for the trading of goods within a given price range.

Certification Practice Statement (CPS)

A statement of the practices which a Certification Authority employs in issuing
public key certificates.

End–entity (EE)

A subject of a certificate who is not a Certification Authority in the Public Key
Infrastructure or an Attribute Authority in the Priviledge Management Infras-
tructure. (An End–entity from the Public Key Infrastructure can be an Attribute
Authority in the Priviledge Management Infrastructure.)

88

Glossary

Public Key Certificate (PKC)

A data structure containing the public key of an end-entity and some other in-
formation, which is digitally signed with the private key of the Certification Au-
thority which issued it.

Public Key Infrastructure (PKI)

The set of hardware, software, people, policies and procedures needed to create,
manage, store, distribute, and revoke PKCs based on public-key cryptography.

Priviledge Management Infrastructure (PMI)

A collection of Attribute Certificates, with their issuing Attribute Authority’s,
subjects, relying parties, and repositories, is referred to as a Priviledge Manage-
ment Infrastructure

Registration Authority (RA)

An optional entity given responsibility for performing some of the administra-
tive tasks necessary in the registration of subjects, such as: confirming the sub-
ject’s identity; validating that the subject is entitled to have the values requested
in a Public Key Certificate and verifying that the subject has possession of the
private key associated with the public key requested for a Public Key Certificate.

Relying Party

A user or agent (e.g., a client or server) who relies on the data in a certificate in
making decisions.

Root CA

A Certification Authority that is directly trusted by an End–entity; that is, se-
curely acquiring the value of a Root CA public key requires some out-of-band
step(s). This term is not meant to imply that a Root CA is necessarily at the top
of any hierarchy, simply that the CA in question is trusted directly.

Subordinate CA

A subordinate CA is one that is not a Root CA for the End–entity in question.
Often, a subordinate CA will not be a Root CA for any entity but this is not
mandatory.

Subject

A subject is the entity (Attribute Authority, Certification Authority, or
End–entity) named in a certificate. Subjects can be human users, computers (as
represented by Domain Name Service (DNS) names or Internet Protocol (IP)
addresses), or even software agents.

89

Glossary

Top CA

A Certification Authority that is at the top of a PKI hierarchy.

Notes
1. http://www.rsasecurity.com/rsalabs/faq/index.html
2. http://www.openssl.org/
3. mailto:eay@aus.rsa.com
4. http://www.ssleay.org/

90

Bibliography

Books

Periodicals

91

Bibliography

92

	The Opensource PKI Book
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Purpose of this document
	Chapter 2. Introduction to Cryptography
	2.1. Cryptographic Algorithms
	2.2. Message Digests
	2.3. Digital Signatures
	2.4. Certificates
	2.5. Certification Authority

	Chapter 3. Basic functionality of a Public Key Infrastructure[TODO]
	3.1. Creation of the keypair and the certificate request
	3.2. Signing of the certificate request by the Certification Authority
	3.3. Certification Authority chains
	3.4. Typical uses of public key cryptography

	Chapter 4. General implementation overview
	4.1. Prerequisites
	4.1.1. Useful opensource software

	4.2. Initialisation of the Certification Authority
	4.2.1. Generate the RSA keypair for the CA
	Parameters

	4.2.2. Create a selfsigned CA Certificate
	Parameters

	4.3. User/Server key generation and signing
	4.3.1. Generate the RSA keypair for a user/server
	Parameters

	4.3.2. Generate a certificate request
	Parameters

	4.3.3. Ask the CA to sign the certificate request

	Chapter 5. PKI standards and specifications
	5.1. Internet X.509 Public Key Infrastructure (PKIX)
	5.2. Architecture for PublicKey Infrastructure (APKI)
	5.3. The NIST Public Key Infrastructure Program

	Chapter 6. Internet X.509 Public Key Infrastructure (PKIX)
	6.1. Abbreviations
	6.2. Concepts
	6.2.1. Certificateusing Systems and PKIs
	6.2.2. Certificateusing Systems and PMIs

	6.3. Overview of the PKIX approach
	6.3.1. PKIX standardisation areas
	6.3.2. Publickey infrastructure functionality
	6.3.3. PublicKey Infrastructure (PKI)
	6.3.4. Privilege Management Infrastructure (PMI)

	Chapter 7. OpenSource Implementations
	7.1. The pyCA Certification Authority
	7.2. The OpenCA Project[TODO]
	7.2.1. OpenCA Layout
	7.2.2. OpenCA Abbreviations
	7.2.3. Software packages
	7.2.4. Functionality of the CA Server (CAServer)
	7.2.4.1. Initialisation / CA Management
	7.2.4.2. Requests
	7.2.4.3. Certificates
	7.2.4.4. Certificate Revocation List CRL

	7.2.5. Functionality of the RA Server (RAServer)
	7.2.5.1. Requests
	7.2.5.2. Certificates
	7.2.5.3. Certificate Revocation List CRL
	7.2.5.4. Miscellaneous Utilities

	7.2.6. Functionality of the RA Operators (RAOperators)
	7.2.6.1. Get Root CA Certificate
	7.2.6.2. Certificate Revocation Lists
	7.2.6.3. Request a Certificate
	7.2.6.4. Get Requested Certificate
	7.2.6.5. Issued Certificates List

	7.2.7. Status of the OpenCA Project
	7.2.8. Future OpenCA work

	7.3. The Oscar Public Key Infrastructure Project
	7.4. Jonah: Freeware PKIX reference implementation
	7.5. Mozilla Open Source PKI projects
	7.5.1. Personal Security Manager (PSM)
	7.5.2. Network Security Services (NSS)
	7.5.3. JavaScript API for Client Certificate Management

	7.6. MISPC Reference Implementation

	Chapter 8. How to get software support
	Chapter 9. Supported Crypto hardware and Software architectures
	9.1. TrustWay Crypto PCI 2000
	9.2. PowerCrypt Encryption Accelerator
	9.3. CryptoSwift eCommerce Accelerator
	9.4. Movement for the Use of Smart Cards in a Linux Environment (MUSCLE)
	9.5. Linux Smart Card Starter's Kit from Schlumberger
	9.6. The gpkcs11 PKCS#11 opensource implementation
	9.7. Common Data Security Architecture (CDSA)
	9.8. Single Signon
	9.9. The KeyMan PKI Management Tool
	9.10. Distributed Audit Service (XDAS)
	9.11. Generic Security Service API (GSSAPI)
	9.12. Simple Network Time Protocol (SNTP)
	9.13. Lightweight Directory Access Protocol (LDAP)
	9.14. S/MIME CMS [TODO]

	Chapter 10. Critical discussion[TODO]
	Chapter 11. Benefits of an OpenSource PKI implementation[TODO]
	Chapter 12. Trademarks
	Chapter 13. Contributions
	Appendix A. Perl modules
	A.1. Locating Perl modules
	A.2. Installing Perl modules

	Appendix B. Sample Certificate Documents
	B.1. Sample Encrypted Private Key in PEM format (2048 bits)
	B.2. Sample Private Key in PEM format (2048 bits)
	B.3. Sample Private Key in TXT format (2048 bits)
	B.4. Sample CA Certificate in PEM format
	B.5. Sample CA Certificate in TXT format
	B.6. Sample certificate request in PEM format
	B.7. Sample certificate request in TXT format

	Appendix C. Description of Public Key Algorithms
	C.1. How does RSA work?
	C.1.1. Description
	C.1.2. Practical example

	C.2. How does El Gamal work?
	C.2.1. Description
	C.2.2. Example

	Appendix D. OpenCA Installation details
	D.1. Software installation sequence
	D.1.1. Installation of Perl modules
	D.1.2. Installation of OpenCAspecific modules
	D.1.3. Installation of OpenCA
	D.1.3.1. CAServer Installation
	D.1.3.2. RAServer Installation
	D.1.3.3. RAOperator Installation

	D.1.4. WWW Server installation
	D.1.5. LDAP installation

	D.2. openssl.cnf configuration for OpenCA

	Appendix E. License
	E.1. GNU Free Documentation License
	E.1.1. PREAMBLE
	E.1.2. APPLICABILITY AND DEFINITIONS
	E.1.3. VERBATIM COPYING
	E.1.4. COPYING IN QUANTITY
	E.1.5. MODIFICATIONS
	E.1.6. COMBINING DOCUMENTS
	E.1.7. COLLECTIONS OF DOCUMENTS
	E.1.8. AGGREGATION WITH INDEPENDENT WORKS
	E.1.9. TRANSLATION
	E.1.10. TERMINATION
	E.1.11. FUTURE REVISIONS OF THIS LICENSE

	Colophon
	Glossary
	CAServer (OpenCA terminology)
	RAServer (OpenCA terminology)
	RAOperator (OpenCA terminology)
	Entity authentication mechanisms
	Peer entity authentication
	Algorithm
	Certification Authority (CA)
	Certificate Request
	Certificate Signing Request (CSR) (OpenCA terminology)
	Cipher
	Ciphertext
	Configuration Directive
	Crosscertificate
	DER format
	Digital Signature
	Digital Timestamp
	Electronic Commerce
	ExportCrippled
	FullyQualified DomainName (FQDN)
	HyperText Transfer Protocol (HTTP)
	HTTPS
	Keyholder
	Key recovery
	Lightweight Directory Access Protocol (LDAP)
	Message Digest
	OpenLDAP
	OpenSSL
	Pass Phrase
	PEM format
	Plaintext
	Private Key
	Public Key
	Public Key Cryptography
	Public Key Cryptography Standards PKCS
	Sexpressions
	Secure Sockets Layer (SSL)
	Single SignOn (SSO)
	SSLeay
	Symmetric Cryptography
	Transport Layer Security (TLS)
	Trusted Third Party (TTP)
	Uniform Resource Locator (URL)
	X.500
	X.509
	Attribute Authority (AA)
	Attribute Certificate (AC)
	Certificate
	Certification Authority (CA)
	Certificate Policy (CP)
	Certification Practice Statement (CPS)
	Endentity (EE)
	Public Key Certificate (PKC)
	Public Key Infrastructure (PKI)
	Priviledge Management Infrastructure (PMI)
	Registration Authority (RA)
	Relying Party
	Root CA
	Subordinate CA
	Subject
	Top CA

	Bibliography
	Books
	Periodicals

