| The Open–source PKI Book: A guide to PKIs and Open–source Implementations | ||
|---|---|---|
| Prev | Appendix B. Sample Certificate Documents | Next |
This is a sample private key in TXT format.
Private-Key: (2048 bit)
modulus:
00:dd:3c:f6:9a:be:d2:66:20:0c:7d:0c:ae:bc:18:
cc:f4:e8:89:8d:16:b3:5c:16:75:06:33:f9:08:4f:
d6:9b:f4:6b:e7:4d:0f:44:af:8b:87:dc:79:78:93:
e8:e4:20:19:df:f0:0d:04:4d:2c:4c:ad:19:b0:31:
8c:6a:4d:a6:d6:0e:e8:ae:e2:37:75:8d:d5:1e:a2:
31:15:3c:f4:4d:ad:5d:f8:d0:23:c2:72:de:e2:73:
9b:ef:f7:84:25:b0:cf:92:4d:39:4a:18:41:ac:91:
81:28:ac:5b:f2:7d:74:e2:8f:f9:a7:c1:c0:b1:93:
dd:cd:b1:4c:23:23:63:27:30:4c:da:8e:72:e4:0d:
77:c2:22:e2:b4:43:bb:9d:ca:36:59:fc:98:91:0c:
da:c4:2c:34:03:0c:e5:91:51:e2:23:20:ae:68:5e:
30:8f:9e:f5:a5:2c:e4:bf:ab:2f:fb:82:03:31:b4:
ff:5e:90:a8:f0:be:b0:4d:aa:f3:af:2c:27:42:c8:
7e:7a:d2:c3:e8:5b:53:8d:86:db:ae:f6:7c:45:03:
35:b6:52:9d:a0:c1:e0:da:ac:6b:68:05:7e:f8:73:
41:62:63:56:b3:47:6e:11:d8:d4:6c:92:be:65:aa:
f2:a5:72:3d:4e:d9:d2:e2:8d:42:92:3e:cf:39:f9:
63:89
publicExponent: 65537 (0x10001)
privateExponent:
5c:a2:77:1b:6a:45:0c:af:e4:aa:c3:91:b2:7e:ab:
ea:ec:27:14:25:6a:2a:67:d8:ce:25:1a:e4:09:11:
f2:31:10:b1:43:c9:dd:d7:a7:13:d7:14:21:91:c5:
15:27:ff:cd:8d:64:d5:e5:3e:64:48:a2:95:ec:d9:
3f:75:8e:22:d9:11:42:90:c3:e9:fb:de:3d:ba:69:
d4:db:b5:eb:84:68:f1:92:ad:36:71:04:b4:4a:f6:
03:2f:5f:6c:ac:b0:ed:30:5a:89:94:c8:82:ea:55:
eb:62:e8:09:0b:d0:d2:40:b8:a7:2e:70:71:aa:59:
58:14:21:ae:20:d6:16:84:d2:29:5c:9b:a7:56:50:
3a:10:0b:c6:70:2b:97:dd:f8:fa:73:74:22:5f:d6:
ce:0d:75:45:8a:61:5d:86:25:cb:ad:19:06:fe:8e:
a4:f9:0d:35:2a:02:04:93:ec:df:0c:db:ca:f0:8c:
ae:a7:54:c2:37:a1:11:7b:9f:40:54:a4:fd:31:a4:
f9:ee:60:3c:8f:3b:0e:b1:e2:10:6d:f0:36:50:63:
27:6e:cc:85:c1:5d:10:4a:36:23:5d:bf:c7:ee:9b:
af:3f:e6:49:47:c6:9e:b8:00:b0:d9:d2:de:07:46:
43:14:2f:de:7c:51:57:a5:8d:4b:13:04:54:25:3b:
d5
prime1:
00:fd:5a:b3:5d:5c:e5:cf:c2:b7:e9:54:93:30:f1:
21:07:9c:c1:01:35:64:7e:90:93:a7:13:d1:89:7b:
58:2b:56:29:61:5e:3f:8d:25:23:be:f4:f8:84:ff:
2e:a1:83:42:f8:19:44:32:2f:7c:2e:d9:f1:64:88:
74:57:8a:ea:1c:3b:12:70:0a:be:86:28:3b:4c:d5:
72:79:22:c7:d2:5a:0a:31:98:29:c0:51:26:6c:42:
03:9c:43:83:d2:72:ab:7d:3f:fd:2b:db:0f:62:0b:
c1:e3:7c:2c:2c:4b:54:ba:36:98:c3:75:b1:8f:69:
4b:5b:62:e2:cb:45:8a:98:1f
prime2:
00:df:8c:67:d5:09:4e:3a:11:c1:9f:d6:7c:a9:88:
e8:0d:88:6f:72:3f:9a:f3:db:43:f5:e3:0f:85:eb:
1f:40:5c:26:6f:31:49:82:4a:ec:7c:67:17:22:89:
c5:99:67:55:ca:06:de:e8:3a:22:85:cf:86:21:82:
2a:fd:03:f8:8e:03:24:b0:4d:40:0e:f7:33:25:29:
1e:f7:66:5f:13:68:b6:d2:5b:a8:54:17:e2:b4:1a:
50:11:13:49:3b:40:65:69:b7:cf:00:bb:39:36:cb:
0a:36:62:e4:59:2d:94:d8:11:c2:6e:fe:03:cc:35:
f0:89:00:77:ec:a3:ce:2f:57
exponent1:
00:c2:f9:01:1d:f1:76:fe:1b:48:b3:6d:1d:d5:45:
4b:f8:f2:be:69:72:b0:82:e2:3a:6f:12:c6:67:7a:
1f:d1:41:fe:98:6b:12:97:49:a4:a7:b9:18:64:29:
89:b6:4c:30:c6:83:93:42:d7:de:46:a3:fc:ac:34:
82:ec:38:00:90:77:39:6a:36:2a:87:4e:00:cc:d1:
5a:c6:34:68:f8:cd:c8:18:80:94:68:e7:4a:9d:77:
74:15:d6:b3:64:ca:50:85:14:30:7e:86:97:e1:09:
51:4e:02:ea:6f:b0:0d:65:3c:cc:f5:66:e6:9d:8a:
17:af:1d:7b:91:99:53:de:5b
exponent2:
00:9b:be:7b:5c:8d:d6:25:58:d7:98:1f:5b:cc:d5:
a8:2e:3d:7e:bf:8f:16:ca:8c:59:a5:c6:a2:ba:ff:
5b:4f:80:a3:fa:55:d1:4b:e8:1d:28:72:be:48:7e:
c9:df:1d:82:44:75:52:f9:61:ff:49:50:92:b7:67:
b3:c1:80:f1:bb:26:ef:79:b0:e8:4f:44:e4:2a:20:
a3:05:64:1a:1b:30:9a:26:a6:5a:f8:f3:87:2b:49:
25:bd:2f:bd:96:7d:3f:ea:4e:77:f6:9f:79:b5:f5:
f1:50:80:c7:6c:65:f8:4c:2c:db:54:6e:be:80:98:
97:d3:2b:33:61:f7:a1:9f:93
coefficient:
00:90:c8:8a:b9:61:c2:b1:5c:82:69:bd:d1:51:fe:
97:03:d8:1d:de:a6:23:be:61:0b:02:d7:c2:4c:81:
ad:4b:5b:51:e4:f8:05:21:5f:86:7a:78:22:56:85:
9c:fe:19:23:f1:20:47:67:3d:67:d7:12:cd:ec:a0:
df:f3:24:94:d3:a3:03:82:00:74:0b:68:1d:5b:88:
49:fa:05:c9:2b:2f:a0:7f:79:85:e4:a9:a3:0e:d9:
29:8c:61:d0:cc:f1:7a:bc:e7:bd:d3:bc:b9:35:02:
ef:54:51:97:52:af:c5:20:96:71:07:c9:17:00:6d:
ab:7d:27:c9:74:71:26:d8:ce
|
![]() | The numbers are in hexadecimal notation where each couple of digits represents 8 bits. |
In decimal, the modulus n is:
27928727520532098560054510086934803266769027328779773633
51762493251995978285544035350906266382585272722398629867
67263282027760422651274751164233304322779357458680526177
93594651686619933029730312573799176384081348734718092523
53476550057243981913102899068449856388885987417785575633
66522578044678796800808595716146657069948593436088106761
86674067708949755093039975941211253008157978789036441127
01109572656021257137086334620169063315388954284609394192
32250643688514600699603929824545296848370051254650037973
10139479221307918200583851065828489354285517184240655579
54933738674003130224949637988279936009837240188474132980
1
|
If an adversary managed to factorise the modulus, she would come up with the factors p and q, where p is:
17791143933509595918127954499653383601218835098160342274
21719349464132778400846891474457120589082133325302604179
82181001327467441044697854896458761089076165690493808885
78606941384914032562858753139200694087767527290102835209
36343115102676302117059691295229400834867089684114302209
27632138221540171427701495839
|
15698106667513592225651910118661853088086996081175911345
49581990193390503622003253143718326860723480921952218366
69795595987275285870475032000847646645415387334949112223
81409068648841957504994872889663428380162653646162371919
71899699949089072105502530930366392712822832371160724348
51400420434671809603239292759
|
The coefficient and the exponents 1 and 2 are used to increase the performance of those operations of RSA that make use of the private key. That is, they are used by the owner of the key and they are only visible to her.
![]() | For information on software that works with natural numbers of arbitrary size, you may find the GMP library quite useful. |